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Overview: Foundations of Applied Statistics

Research agenda: A theory of Applied Statistics.

“Is this the right method to use to answer my question or make my
decision?”

“Is the answer to my question well-defined?”

New desiderata that we can work into modeling decisions.
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Generative Network Models

Buffalo 1990
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Data Representation

YV entries in arbitrary sample
space Y.

Covariates XV combine observed,
latent attributes,

X ij
V = f (C i

V ,C
j
V ,D

ij
V ).
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Social Network Questions

Given the history of a set of actors, how will they behave in the future?
(e.g., Mikes karate club)

Given a partially observed set of interactions among a set of actors, can we
impute unobserved interactions? (e.g., network security)

Do two sets of individuals interact in noticeably different ways? (e.g., US
vs Canada, Boston vs Silicon Valley)

Given our understanding of social interactions among one set of actors,
what can we say about behavior among another set of actors? (e.g.,
sociological theory-building)

Can we borrow strength between different actor-sets to obtain better
resolution on the behavior of both? (e.g., regional random effects)
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Attempt 1: Network Regression

Cox PH regression. (Perry and Wolfe, 2013)
Inventor coauthorships in Michigan’s motor industry 1982-1988.

Covariates (Coefs are log-ratios):

post85: After 1985.
asgnum: Work for same firm.
prev: Have worked together before.

lower est upper

post85 15.49 15.84 16.20

asgnum 4.65 4.83 5.02

pre 11.36 11.73 12.10

post85:asgnum -4.77 -4.40 -4.03

post85:prev -14.57 -14.00 -13.44

asgnum:prev -5.56 -5.16 -4.76

post85:asgnum:prev 3.91 4.52 5.13
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Attempt 2: Regional Comparison Regression

Point process regression. Same time window, different regions.
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Social Network Questions

Given the history of a set of actors, how will they behave in the future?
(e.g., Mikes karate club)

Given a partially observed set of interactions among a set of actors, can we
impute unobserved interactions? (e.g., network security)

Do two sets of individuals interact in noticeably different ways? (e.g., US
vs Canada, Boston vs Silicon Valley)

Given our understanding of social interactions among one set of actors,
what can we say about behavior among another set of actors? (e.g.,
sociological theory-building)

Can we borrow strength between different actor-sets to obtain better
resolution on the behavior of both? (e.g., regional random effects)

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 8 / 24



Social Network Questions

Given the history of a set of actors, how will they behave in the future?
(e.g., Mikes karate club)

Given a partially observed set of interactions among a set of actors, can we
impute unobserved interactions? (e.g., network security)

Do two sets of individuals interact in noticeably different ways? (e.g., US
vs Canada, Boston vs Silicon Valley)

Given our understanding of social interactions among one set of actors,
what can we say about behavior among another set of actors? (e.g.,
sociological theory-building)

Can we borrow strength between different actor-sets to obtain better
resolution on the behavior of both? (e.g., regional random effects)

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 8 / 24



Social Network Questions

Given the history of a set of actors, how will they behave in the future?
(e.g., Mikes karate club)

Given a partially observed set of interactions among a set of actors, can we
impute unobserved interactions? (e.g., network security)

Do two sets of individuals interact in noticeably different ways? (e.g., US
vs Canada, Boston vs Silicon Valley)

Given our understanding of social interactions among one set of actors,
what can we say about behavior among another set of actors? (e.g.,
sociological theory-building)

Can we borrow strength between different actor-sets to obtain better
resolution on the behavior of both? (e.g., regional random effects)

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 8 / 24



Inference Paradigms
What sort of question are you asking?

“Single-Sample”

For a fixed set of actors

Project forward in time.

Impute unmeasured links.

“Superpopulation”

For differing sets of actors

Compare network samples.

Predict or pool information
across networks.

Scale local intuition to
global network.

Replications restricted to V . Replications for any V ⊂ V.
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Inference Paradigms
What can theory tell us?

Except under restrictive assumptions, criteria for superpopulation and
single-sample inference are non-equivalent.

Each outcome Y ij
V is conditionally independent.

If model is correctly specified.

Theory so far covers single-sample inference, giving little guidance for
superpopulation questions .
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Roadmap

The Question: Formalism for defining a superpopulation question.

The Method: Criterion for usefulness of a misspecified model’s MLE.

The Wrinkle: Formalism for representing “sparsity” of network data.

The Result: Sparsity misspecification makes misspecified MLE’s
non-useful for superpopulation inference.
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The Question: Superpopulation Inference
How do we represent a network superpopulation?

Infinite random graph object defined top-down as stochastic process
(Shalizi and Rinaldo 2013).

Definition 1 (Random Graph Process).

A random graph process YV is a stochastic process indexed by a countably
infinite vertex set V whose finite-dimensional distribution for any finite
subset V ⊂ V defines an interaction graph YV with vertex set V . Denote
the law of YV as PV and the law of a finite-dimensional projection YV as
PV .

Statistical interpretation: Observed samples are finite subgraphs of
population graph. Population graph is of scientific interest.

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 11 / 24



The Question: Superpopulation Inference
How do we represent a network superpopulation?

Infinite random graph object defined top-down as stochastic process
(Shalizi and Rinaldo 2013).

Definition 1 (Random Graph Process).

A random graph process YV is a stochastic process indexed by a countably
infinite vertex set V whose finite-dimensional distribution for any finite
subset V ⊂ V defines an interaction graph YV with vertex set V . Denote
the law of YV as PV and the law of a finite-dimensional projection YV as
PV .

Statistical interpretation: Observed samples are finite subgraphs of
population graph. Population graph is of scientific interest.

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 11 / 24



The Question: Superpopulation Inference
How do we represent a network superpopulation?

Infinite random graph object defined top-down as stochastic process
(Shalizi and Rinaldo 2013).

Definition 1 (Random Graph Process).

A random graph process YV is a stochastic process indexed by a countably
infinite vertex set V whose finite-dimensional distribution for any finite
subset V ⊂ V defines an interaction graph YV with vertex set V . Denote
the law of YV as PV and the law of a finite-dimensional projection YV as
PV .

Statistical interpretation: Observed samples are finite subgraphs of
population graph. Population graph is of scientific interest.

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 11 / 24



The Question: Superpopulation Inference
How do we represent a network superpopulation?

Infinite random graph object defined top-down as stochastic process
(Shalizi and Rinaldo 2013).

Definition 1 (Random Graph Process).

A random graph process YV is a stochastic process indexed by a countably
infinite vertex set V whose finite-dimensional distribution for any finite
subset V ⊂ V defines an interaction graph YV with vertex set V . Denote
the law of YV as PV and the law of a finite-dimensional projection YV as
PV .

Statistical interpretation: Observed samples are finite subgraphs of
population graph. Population graph is of scientific interest.

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 11 / 24



The Question: Superpopulation Inference
Infinite objects and theory-building tools

Example: Bickel and Chen 2009
(YVn) a sequence of random graphs of Aldous-Hoover form where

P(Y ij
Vn
6= 0) = ρnW (C i

Vn
,C j

Vn
)

where |Vn| = n and ρn → 0.
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The Question: Superpopulation Inference

Superpopulation: Random graph process

Induces Kolmogorov consistency on constructed sequences.

Focus on relationships between finite-dimensional distributions.

Infinity is useful, but limit is unimportant.

Example:
(YVn) a sequence of random graphs derived from YV. For each Vn, PVn

obtained from PV by projection.
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The Method: Parametric MLE
Operational procedure

Let P0,V be the law of the true population process; P0,V be the
distribution of the sample YV .

Likelihood inference procedure

1 Propose a model family PΘ,V of models Pθ,V.

2 PΘ,V implies a likelihood Pθ,V on the sampled index set V for each
θ ∈ Θ. Compute

θ̂V = arg maxΘ logPθ,V (YV ). (1)

3 Interpret θ̂V as a superpopulation parameter estimate.

Note: Step 3 is the only difference between single-sample and
superpopulation.
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Models and Misspecification
Model-Building Tradeoffs

No parsimonious model can fully represent complex network structure.

Choose one:

Local structure. Homophily, Heterophily, Transitivity, etc.

Global structure. Sparsity, Percolation, etc.

Local approaches are popular in Statistics/ML.
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Models and Misspecification
Common local approaches

Conditionally independent dyads (CID, e.g., regression):

P(Y | X ) =
∏

i<j<n

P(Y ij
V | X

ij
V ).

Infinitely exchangeable dyads (Aldous-Hoover):

P(Y | X ) =

∫
C

∏
i<j<n

P(Y ij
V |W

ij
V (C i

V ,C
j
V ))dF (C ).

Fact: Do not capture “sparsity” property of real social networks.
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Misspecified Models and Science
All models are wrong but...

How do we make sense of a misspecified model?

Parameter estimates as measurements of P0,V .

Minimal criterion for “usefulness”: Stability.

“Similar” inputs YV yield “similar” estimates θ̂V .

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 14 / 24



Misspecified Models and Science
All models are wrong but...

How do we make sense of a misspecified model?

Parameter estimates as measurements of P0,V .

Minimal criterion for “usefulness”: Stability.

“Similar” inputs YV yield “similar” estimates θ̂V .

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 14 / 24



Misspecified Models and Science
All models are wrong but...

How do we make sense of a misspecified model?

Parameter estimates as measurements of P0,V .

Minimal criterion for “usefulness”: Stability.

“Similar” inputs YV yield “similar” estimates θ̂V .

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 14 / 24



Misspecified Models and Science
All models are wrong but...

How do we make sense of a misspecified model?

Parameter estimates as measurements of P0,V .

Minimal criterion for “usefulness”: Stability.

“Similar” inputs YV yield “similar” estimates θ̂V .

D’Amour (HSPH) Sparsity Misspecification 2/22/2016 14 / 24



Misspecified Models and Science
Stability: Single sample case

“Similar input” means replications of YV from the same finite distribution
P0,V .

Huber 1967 showed MLE is large-sample consistent for a pseudo-true
parameter (naming due to Sawa 1978), satisfying

θ̄V = arg maxθ∈Θ EP0 [logPθ,V (YV )] (2)

“Similar output” defined by concentration of θ̂V in large samples.
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Misspecified Models and Science
Stability: Superpopulation case

“Similar input” means any sample YV drawn from the same
superpopulation P0,V.

Intuitively, outputs θ̂V are similar if they effectively estimate the same
thing.

What does the MLE θ̂V effectively estimate when the model is
misspecified?
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The Effective Estimand of the MLE

Define the effective estimand of the MLE as the finite-sample pseudo-true
parameter.

θ̄V = arg maxθ∈Θ EP0 [logPθ,V (YV )] (2)

Justifications:

Finite-sample concentration (e.g., Spokoiny 2012).

Fisher-consistency inversion.

Estimating equation unbiased.

KL projection functional plug-in.
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Superpopulation Stability Criterion

Criterion 1.

A procedure is superpopuatlion stable for making inferences about a
superopulation process P0,V only if, for any finite sample YV generated

according to P0,V , the effective estimand θ̄V of the estimator θ̂V is
invariant to the indexing set V .

Remarks:

1 Comes for free for correectly specified models.

2 Global generalization of local influence-based stability.

3 Closely tied to maintaining the ancillarity of conditioning statistics V .

Test the criterion with top-down specification of superpopulation
properties, e.g., sparsity.
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The Wrinkle: Sparsity
Illustration
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The Wrinkle: Sparsity
Formally

Define the density operator

D(YV ) =

∑
ij I{Y

ij
V 6= 0}(|V |

2

) .

Definition 1 (Sparse Graph Process).

Let YV be a random graph process on V. YV is sparse if and only if for
any ε > 0 there exists an n such that for any subset of vertices V ∈ V
with |V | > n the corresponding finite dimensional random graph YV has
the property E(D(YV )) < ε.

Also, sparsity rate ε(n).
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The Wrinkle: Sparsity
Differences vs single-sample sparsity.

Single-sample

Defined in terms of random graph sequences.

Often defined in explicitly non-Kolmogorov-consistent terms.

Analogy for single sample with very few observed interactions.

Superpopulation

Property of a random graph process, not a random graph.

Defines an assumption about the system, not a theoretical object.
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Sparsity Misspecification
Definition

A model family Pθ,V is sparsity misspecfied iff for every θ ∈ Θ and every
increasing sequence of vertex sets (Vn),

Eθ(D(YVn))

E0(D(YVn))
→ 0 or ∞.

For example,

For CID (under regularity) and exchangeable models, population
extension is dense or empty (e.g., Orbanz and Roy, 2013).

For process models, most lock in a given form for ε(n) (e.g., power
law for preferential attachment).
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Main Result: Moving Target
Assumptions

Let (Vn) be an increasing sequence of vertex sets from V. Then assume

(A1) Non-emptiness. For some finite n, E0(D(YVn)) > 0.

(A2) Sparsity misspecification. The inferential family PΘ,V is sparsity
misspecified for the true population process P0,V, which has sparsity
rate ε0(n).

(A3) Responsiveness. The effectively estimated model has vanishing
plug-in prediction bias, and

|Eθ̄(D(YVn))− E0(D(YVn))| ∈ O(ε(n)). (3)
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Main Result: Moving Target
Statement

Theorem 1 (Moving target theorem).

Let (Vn) be an increasing sequence of vertex sets from V. Suppose
(A1)–(A3) hold. Then, θ̄Vn varies with n in the sense that for any n, there
exists an n′ > n such that θ̄Vn 6= θ̄Vn′ , and the MLE of the model violates
Criterion 1.
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Main Result: Moving Target
Intuition
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Example: Poisson Regression
Setup

Question: How do firms influence collaboration dynamics?

Data: YV collaboration counts; X ij
V indicates shared firm.

Assumptions:

(E1) Sparsity. The true collaboration-generating process Y0,V is sparse .

(E2) Small firms. All firms have finite size.

(E3) Firms produce. A non-vanishing fraction of firms have a positive
number of expected within-firm interactions.
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Example: Poisson Regression
Model and effective estimand

Model:

Y ij
V

⊥⊥∼ Pois(exp(θ(1) + X ij
Vn
θ(2))), (3)

Effective Estimands:

θ̄
(1)
V = log

(∑
ij E0(Y ij

V | X
ij
V = 0)(1− X ij

V )∑
ij(1− X ij

V )

)
(4)

θ̄
(2)
V = log

(∑
ij E0(Y ij

V | X
ij
V = 1)X ij

V∑
ij X

ij
V

/∑
ij E0(Y ij

V | X
ij
V = 0)(1− X ij

V )∑
ij(1− X ij

V )

)
.

(5)

What’s wrong with this picture?
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Changing the Question
Salvaging conditional independence

What can we know about network superpopulations without being able to
sparsity?

Motivates: Isolate sparsity, estimate sparsity-independent properties.

Proposal: Suppose P0,V factors into two stages. Complex relationship
structure RV. YV simple conditional on relationships, i.e., for every V ,

P0,V (RV ,YV | XV ) = P0,V (R)
∏

i<j<n

P0,V (Y ij
V | RV ,XV ). (6)

Refocus: Define sparsity-independent parameter of interest.

Pθ,V (YV | XV )→ Pβ,V (YV | RV ,XV ).
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Partial Resolution
Conditionally Independent Relationship model

Unobserved Social Structure (Blockmodel)
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Partial Resolution
Full likelihood inference?

Let θ ≡ (β, γ), with β the parameters of interest and γ the nuisance
parameters.

ML estimation integrates over unobserved RV :

(β̄, γ̄) ≡ arg max(β,γ) log

 ∑
RV∈RV

Pθ,V (RV | XV )
∏

i<j<n

Pβ,V (Y ij
V | R

ij
V ,X

ij
V )



Problem solved?
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Partial Resolution
Partial likelihood inference

Let AV = I{YV 6= 0}.

Exploit conditional distribution

Pβ(YV | AV ,XV ) =
Pβ(YV | RV ,XV )

1− Pβ(YV = 0 | RV ,XV )
,

or the zero-truncated likelihood.

By modeling less, obtain an effective estimand β̄V invariant to the
marginal distribution of RV .

Bonus: Computation is O(
∑

ij AV ).
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Truncated Estimator
Theory

Let YV is a random graph process, P0,V be the true law governing this
process, and PΘ,V be a model family proposed by the investigator. Assume
the following

Assumptions:

(T1) CIR factorizable. The finite-dimensional distributions of YV can be
factorized as in Equation 6 for all sample indices V .

(T2) Correct conditional specification. The model family PΘ,V
correctly specifies the conditional process P0,V(YV | XV,RV), so that
there exists a β0 ∈ B such that
Pβ0,V(Y ij

V | XV,RV) = P0,V(Y ij
V | XV,RV).

(T3) Identification. The model family PΘ,V is specified so that β is

identified by the truncated data {Y ij
V : Aij

V = 1}.
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Truncated Estimator

Theorem 1 (Superpopulation Stability of Truncated Estimator).

Let YV is a random graph process, P0,V be the true law governing this
process, and PΘ,V be a model family proposed by the investigator. Assume
that (T1)–(T3) hold.
Then the effective estimand of the MTLE does not depend on V and, in
particular, β̄trV = β0 for all V .
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Truncated Estimator
Simulated success
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Truncated Estimator
Real success
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Discussion

GEP Box: “Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.”

We need a formal language of usefulness.

Estimated objects are tools for decision-making. Estimators must recover
decision-critical properties. Effective estimand makes this formal.

Modeling less of the system by seeking invariances make a model more
scientifically relevant. Invariance can be better than a bad explanation.
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