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Abstract

Recent interest in network data has driven a flurry of research into generative net-

work models. However, despite impressive theoretical progress, these models have a

mixed record in scientific application. In particular, there is a disconnect between two

of the major use cases for network models. In the first case, which we call single-sample

problems, investigators hope to understand the network dynamics within a fixed set

of individuals. In the second case, which we call superpopulation problems, investiga-

tors hope to understand network dynamics that are common between network samples

obtained from distinct sets of individuals, so that different network samples (for ex-

ample, from different cities) can be compared and understood together. Despite the

importance of both of these problems, most theoretical work and successful investiga-

tions have focused on single-sample rather than superpopulation problems. Unlike the

classical case of independent data, for network data, the theories of estimation in large

single-sample problems and in superpopulation problems are not equivalent.

In this paper, we develop a theoretical framework for the network superpopulation

inference problem and use it to understand why many network models are ineffec-

tive at predicting, comparing, or sharing information across network samples. We tie

these difficulties to two of the perennial complications in network modeling: model

misspecification and network sparsity. Motivated by this characterization, we propose

a modeling and inference framework that is robust to the sparse scaling of social net-

woks. This framework avoids specifying the mechanism that generates the sparsity in

the underlying social process by instead fully specifying the likelihood for the same

data filtered through a different observation mechanism. The derived sparsity-robust

estimator inherits the easy extensibility and theoretical guaranteed of MLE estima-

tors, and has the added advantage of compuational efficiency. We demonstrate this

framework on simulated data.
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1 Introduction

In recent years, social network data have become available that catalogue social interactions

between actors in a wide range of contexts, from coauthorship to personal relationships to

email correspondence. These have sparked investigations about network structure in a variety

of fields including organizational behavior, marketing, political science, and sociology. In

response, the statistical and machine learning communities have offered a variety of modeling

approaches that give intuitive quantitative summaries of networks in terms of generative

parameters (see [34] for an overview).

The network data that we consider in this paper have the following form. There is a set of

actors V , and a record YV of the pairwise interactions between the actors in V . We limit our

discussion to undirected network data, so outcomes correspond to unique unordered actor-

pairs, or dyads. Thus, YV contains
(|V |

2

)
outcomes. We denote an individual outcome in

YV corresponding actors i and j, where i < j < |V | as Y ij
V . As we will discuss further in

Section 2, the subscript V is used to indicate the index of the sample within an overarching

stochastic process of which YV is a finite-dimensional projection, while the superscript ij

indicates the index of an actor-pair or dyad within the specific sample YV .

Each outcome Y ij
V lives in an outcome space of interaction records Y , which varies by the

particular application – for example, the records may be binary, to indicate presence or

absence of ties, count-valued, to indicate interaction counts, point-valued, to indicate times-

tamps of interactions, categorically-valued, to indicate relationship types, or some combi-

nation thereof. In addition to outcomes, there is often a corresponding covariate collection

XV , containing covariate information for each of the
(|V |

2

)
outcomes in YV . We denote the

individual elements of XV that correspond to a particular pair of actors i and j as X ij
V .

Generally, we can divide the inferential questions that investigators seek to answer with

this sort of data into one of two categories. The first is single-sample problems, where

investigators wish to infer some properties of a social network defined on a fixed, finite

set of vertices V . For example, investigators may wish to infer the presence or absence of

links that are missing from the current dataset YV , or predict future interactions among the

actors in V . The second category is superpopulation problems, where investigators wish to

infer properties that are shared between social networks defined on different actor sets, say

V and V ′. We call these superpopulation problems because they require the notion of a

superpopulation from which both YV and YV ′ were drawn to justify generalizing inferences

between heterogeneous samples. For example, investigators may wish to test whether two
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network samples YV and YV ′ were generated by the same stochastic process, or define a

hierarchical model to borrow strength between network samples.

Generative network models have shown promising performance in answering single-sample

questions, but have been less successful for superpopulation questions. In these superpopu-

lation contexts, parameter estimates are often unstable when investigators wish to compare

networks of different size, a problem most notably documented in [21]. We also see this

problem in cases where only a single network is of interest, but models developed from

small-sample intuition (e.g., by obseving 18 monks in Sampson’s Monastery) are applied to

large datasets (e.g., messaging behavior among Facebook users). In these cases, we see that

parameter estimates land outside of the range of reasonable effect sizes, and are thus not

easily interpreted and incorporated into social science theory. We give an example of such a

fit in Section 1.1.

At first, this failure appears puzzling given the impressive array of theoretical work that

has been developed to support many popular network models, e.g., [3, 7]. In actuality,

this situation is unsurprising because single-sample and superpopulation questions interro-

gate different aspects of a data-generating process. Given that no simple network model

can capture the full complexity of human social dynamics, there is little reason to believe

that a model that is effective for answering single-sample questions (by characterizing the

replication distribution of the observed sample YV ) should also be useful for answering super-

population questions about network samples defined on distinct actor sets (by characterizing

the superpopulation from network samples defined on arbitrary actor sets V ′ are drawn).

Indeed, these properties only coincide in the classical setting of independent data where

large samples and superpopulations have the same stochastic process structure. With the

dependence present in network data, separate arguments are necessary to show that a partic-

ular procedure captures single-sample or superpopulation properties of the data-generating

process. So far, in extending notions of large-sample consistency to network models, authors

in this literature have focused on arguments that are relevant to single-sample inference.

In this paper, we develop a theoretical framework for evaluating a network model’s suit-

ability for superpopulation investigations. Using this framework, we argue that the poor

performance of network models in superpopulation inference tasks is a symptom of model

misspecification, specifically the aspect of the model that implicitly embeds the observed

network sample into a superpopulation process. This misspecification is largely immaterial

to answering single-sample questions, but is central to superpopulation investigations. We

show that one particular type of embedding misspecification, which we call sparsity misspec-
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ification, is sufficient to derail superpopulation analyses that hope to generalize inferences

between network samples of different size. We say a model is sparsity misspecified if it does

not precisely capture the sparsity of a social interaction process. Heuristically, sparsity refers

to the tendency of social interaction networks to have vanishing network density – defined as

the ratio of the number of nonzero interactions
∑

i<j<|V | 1Y ijV 6=0 to the number of potential

interactions in a network sample
(|V |

2

)
– as the network sample becomes large. Model mis-

specification and sparsity are thorny issues that are always lurking in the background in the

statistical analysis of networks; one advantage of our theoretical approach is that it allows

us to reason about these issues in one coherent framework.

Sparsity misspecification is a ubiquitous problem among popular network analysis models,

most notably those that assume that the dyad-wise outcomes in a network sample YV , are

mutually independent conditional on observable or latent characteristics. Examples of these

models include network regression models as in [28] or exchangeable random graph models

[24], which include as special cases latent class [7] and latent space models [18]. This is

make sparsity misspecification a major concern because several large questions of interest in

social science require inferences that can be reliably generalized between network samples

for out-of-sample prediction, between-sample comparison, and multilevel modeling. Model

improvement is an attractive option, but information about the sparsity of a social process

is difficult to obtain from a small number of network samples and models that have flexible

sparsity patterns are difficult to specify and fit. To solve this impasse, we propose sparsity

invariance as a realistic and robust modeling principle, and present a modeling and inference

framework where the object of inference and the inferential procedure are invariant to the

sparsity of the underlying population.

1.1 A running example: inventor collaboration network

Throughout the paper, we use the data analysis problem that motivated this work as a

running example. We use an inventor-disambiguated version of the US patent record [22]

to build a collaboration network among inventors who filed for patents in the United States

between 1975 and 2010. In the network representation, inventors are represented as vertices

V , and the pairwise outcomes YV record pairwise coauthorships on patents. The data set

contains the date of each coauthorship (which we define as the application date), and we

often see repeated coauthorships between pairs of inventors. Thus, at full resolution, for

each pair of inventors ij, the coauthorship record Y ij
V has a point-process structure, but

lower resolution representations are also possible. For example, we can define the outcome
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Y ij
V as the number of collaborations between inventors i and j over some fixed observation

interval.

The inventor data also contains side information that we can use as covariates X to model

collaboration behavior, including each inventor’s firm and zipcode. In examples throughout

this paper, we consider three simple binary covariates that are available for each inventor-pair

collaboration event: whether the inventors live in the same zipcode, whether the inventors

work for the same firm (the “assignee”) at the time of the patent application, and whether the

inventors had a previous patent collaboration before the current patent application. Thus,

in this example we define X ij
V to be a 3-component binary vector for each ij.

Some simple analyses based on these covariates showcase the problems we have described

so far. Consider a point-process regression model, in the style of [28], where we specify the

log-hazard of a collaboration event between inventors i and j as a linear combination of the

zipcode, assignee, and previous collaboration covariates described above (we describe this

specification in full detail in Section 8.1.1). We apply this model to regional collaboration

networks constructed from a 6-year window of interaction data beginning in 1983, defining V

for each model fit to be the set of inventors residing in a particular Census Bureau Statistical

Area (CBSA) surrounding a major US city during the observation window. The results for

each CBSA are shown on the left of Figure 1. These demonstrate that the parameter

estimates for each fit depend strongly on the size of the network sample, and that the fits

return extremely large effect estimates and extremely small uncertainy estimates. We also

display the results of our sparsity-invariant methodology described in Section 6 on the right.

Taking one region at a time, these extreme parameter estimates are not surprising. For

example, when collaboration events are relatively rare compared to the total number of

inventor-pairs, we would expect collaboration events between inventors who have already

generated a patent together to be orders of magnitude more common than events occuring

between any arbitrary pair of inventors. However, if we wish to distinguish between collab-

oration patterns in different regions of the country, it is unclear how we would use these

parameter estimates to do so. Certainly some variation should be expected between regions,

but this example makes clear that it is difficult to separate the effect of network sparsity

on the parameter estimates (manifested as large sample size effects) from true differences in

the data generating processes between these network samples. This difficulty and methods

to avoid it are the main focus of this paper. We will return to a simulated version of this

example in Section 8.
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Figure 1: Inferred parameter values and asymptotic intervals from a simple point process re-
gression model explaining patent collaboration events occurring in different regional inventor
networks in the United States. (Left) parameter estimates from this standard conditionally
independent dyad (see Section 3.2) model show strong dependence on sample size, extremely
large effect estimates, and very small error estimates. (Right) parameter estimates from our
truncated methodology (see Section 6) show stability across regions with more realistic effect
and error estimates.
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1.2 Related work

This paper has two main pieces. The first introduces the theory of sparsity misspecification,

while the second proposes a modeling framework and corresponding inferential procedure

that is sparsity-invariant.

The theory section is built around a statistical framework that defines the notions of sample

and superpopulation in the context of networks. Our formulation extends Shalizi and Ri-

naldo’s work in [31], which defined a network superpopulation as a stochastic process indexed

by actor-sets, and network samples drawn from this superpopulation as finite dimensional

projections of this population process. Shalizi and Rinaldo used this framework to character-

ize the properties of exponential random graph models (ERGMs), specifically to determine

whether embedding an ERGM into a stochastic process is feasible at all, a property they call

projectibility. In this paper, we use similar formalism but tackle a different question. Instead

of asking whether a proposed model is projective (we assume this is the case for all models we

consider here) we use the stochastic process framework to investigate whether the inferences

obtained from a model have the invariances necessary to be suitable for answering questions

about network superpopulations. In particular, we require that inferences obtained from a

model fit be stable across samples drawn from the same network superpopulation, regardless

of the indices of those samples.

We devote a significant amount of effort to formalizing this notion of stability. The question

of whether a model gives stable inferences, in the sense that nominally similar samples yield

similar inferences (the meaning of “nominally similar” depends on the particular invariance

that the investigator requires of the estimation procedure, as we describe below), is a critical

question when we consider the utility of simple parametric models in scientific arguments.

Because we know that simple models for complex social phenomena must be misspecified in

some way, stability is one of the only criteria by which we can judge whether the parameter

estimates for a given model are capturing scientifically useful signal. Notions of stability

have appeared in many areas of Statistics (see [39] for a summary). In network analysis,

[30] investigated this idea in identifying instability in ERGM models that have particular

degeneracies in their supports on the space of sufficient statistics, and a number of papers

followed in a similar vein in the ERGM literature, e.g., [21]. These ERGM studies have

treated stability of realized estimates with respect to small perturbations of the observed

data. On the other hand, we are interested in a broader notion of stability, namely whether

the target of estimation remains invariant between samples from the same population that

differ on a dimension that is ancillary to the underlying social process of interest. In this case,
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the size of the sample that the investigator chooses to analyze is the ancillary dimension.

The stochastic process framework is a powerful tool for probing this type of instability, and

represents a novel approach to this question within the networks literature.

In our main negative result, we show that the sparsity of social interaction networks induces

an instability in inferences when the working model is sparsity-misspecified. We begin this

discussion with a novel definition of sparsity, which we define as an asymptotic property of

the network population process. This is in contrast to the single-sample networks literature,

which has used a working definition of sparsity as a sample-wise property, saying that a

given network sample is sparse if the fraction of nonzero interactions in the sample is small.

Asymptotic arguments based on this definition do not appeal to a superpopulation, but

instead reason by analogy about whether there is enough information in the small number

of realized actions within a sample to reliably fit a model [3, 7]. Thus our superpopulation-

oriented results about the instability of inferences from sparsity-misspecified models are

qualitatively different from the consistency results that have appeared in the literature before.

Our instability result has major implications for network modeling. A number of authors

have shown that popular latent variable models for social interaction data do not capture

network sparsity because their large-sample limits under stochastically consistent extensions

are dense [3, 24]. We show here that even under weaker misspecifications than these, gener-

ative network models will not produce model fits that are stable across samples sizes. There

have been proposals for generative network processes that do achieve a population sparsity

property. Many of these rely on additional information that makes actors non-exchangeable,

for example the actors’ order of entry into the network, and when this information is not

available, require imputation in combinatorially large sample spaces [37]. In another vein,

[6] present some novel work using a point process specifiction to achieve network samples

that are sparse in some sense, but the mapping of this process to the conventional setting

of having a network subsample with a known actor set is still not fully understood. In all

of these process models, the specification of the underlying process places strong restrictions

on the rate at which the network density falls to zero as samples become large, meaning that

sparsity misspecification is still a major concern.

In the second half of the paper, we develop a sparsity-invariant approach to modeling and

inference which we present as an alternative to modeling sparsity explicitly. We propose

dividing the network generating process into two stages, with one process that governs the

sparsity of the network, and a second process, defined conditioned on the first, that governs

observable interactions. Given that the process that induces sparsity is difficult to model, we
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focus on drawing parametric inferences about the latter conditional interaction process. This

approach was inspired by [28], in which the authors introduced the notion of a “risk set” to

the networks literature, where the risk set defines the subset of dyads in a network sample

that are “at risk” of producing observable interactions. There, the risk set was a vestigial

piece of the authors’ Cox proportional hazard model specification (in the original survival

analysis context, the risk set is used to identify which patients in a study have not yet died

or been lost to follow-up), and in their analysis, the authors chose to pre-specify the risk set

as all dyads in the network sample, but referenced the possibility of specifying a non-trivial

risk set instead. Here, we treat the risk set as a set of underlying social relationships that

are pre-requisites to the generation of observable interactions.

To avoid the difficult question of modeling a sparse relationship structure, we propose an

inferential approach that estimates the parameters of the conditional distribution of observed

interactions without inferring or even specifying the marginal distribution of relationships on

which they are conditioned. Instead, we condition on which dyads have produced nonzero

interactions, and infer the parameters of the interaction process using the zero-truncated

distribution. This approach is most generally a partial likelihood method [9, 38], although

it can also be classified more specifically as a conditional likelihood [14] because we have

chosen to condition on a statistic that isolates the parameters of the conditional distribution

of interest. It is also possible, however, to view our zero-truncated approach as a marginal

likelihood method, as introduced in [13], where we have chosen to ignore the actual sample

size of the data and to marginalize over it instead. Both of these views are useful for

characterizing the properties of our estimation procedure.

Proposals have appeared before in the networks literature to adjust network models to

achieve inferential stability across sample size. [21] proposed an offset term that stabi-

lizes change statistics in ERGMs, but did not attempt to justify this as a likelihood-based

approach. [17] proposed generative models for the true observation in fixed rank nomination

networks that the effect of removing sample-size dependent artifacts that appeared in previ-

ous näıve modeling approaches. Our approach here differs in that we use the truncated data

model to create a likelihood-based adjustment that is completely agnostic to the process

that induces sparsity in the network. Procedures similar to zero-truncation, including dyad

subsampling and zero-inflation, have also been proposed in the literature before, but, rather

than invariance to sparsity in superpopulation inference, these proposals have focused on

single-sample fit [4], novel network representations [32], or approximate likelihood inference

for computational efficiency [15]. Notably, our proposed procedure is able to achieve similar

computational efficiency using an exact likelihood function.
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Social scientific questions about the organizational behavior of inventors holding patents in

the United States in, e.g., [25], were the original motivation of this work. In another series

of papers, [10] and [12], we extend this modeling framework to the causal inference setting

and use data from the US patent record made available by [22] to infer the causal effect of

a policy change on the collaboration dynamics of inventors.

1.3 Contributions

We have organized the contributions of this paper as follows. The theoretical contributions

in the first half of the paper lay the groundwork for the main negative result presented

in Section 4.uThis result requires two building blocks. First, in Section 2 we introduce

formalism tailored to analyzing superpopulation inference procedures for networks. This

section includes the novel concept of an “effective estimand”, which we use to state a stability

criterion for inference in superpopulation problems. Second, in Section 3 specify a notion

of sparsity that is compatible with our analytical framework and use this to define the

notion of “sparsity misspecifciation”. This section includes a result showing that many

popular network models fall into the sparsity-misspecified class. We use these building blocks

in Section 4 to establish the main negative result – that under mild conditions, sparsity

misspecified models violate a minimal stability criterion necessary to produce meaningful

superpopulation inferences

In the second half of the paper, we propose methods based on a novel modeling framework

that are designed to satisfy our stability criterion when applied to sparse networks. In Sec-

tion 5, we present our “Conditionally Independent Relationship” (CIR) modeling framework,

and in Section 6 we present an inference method based on this model class that is invari-

ant to the sparsity of the underlying data generating process. We also establish some of its

properties in the context of both single-sample and superpopulation inference in this section.

Finally, we present analytical and computational examples in Section 7 and Section 8, and

conclude with a discussion in Section 9.

1.4 Technical notes

Throughout, we assume that the investigator is employing maximum likelihood estimation,

so we treat specifying a model and specifying an estimator as equivalent operations. We

discuss potential generalizations of our results to other inference methods that map models
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to estimators differently in Section 9.

We focus exclusively on undirected network models. In the likelihoods of models of these

networks, we simply write sums or products over ij but these can be taken to mean sums or

products over i < j < n if n is the size of the set.

2 Network Superpopulation Inference

In this section, we present a formal characterization of network superpopulation inference

problems, where the investigator’s goal is to obtain parameter estimates and predictive dis-

tributions from a sample YV that can be used in downstream analyses that involve distinct

actor sets V ′ 6= V . Such downstream analyses could include testing whether separate sam-

ples were drawn from a similar population by comparing parameter estimates, predicting

interaction outcomes within a new actor set, or shrinking together estimates from separate

samples in a hierarchical model. We call this “superpopulation inference” because any of

these downstream analyses requires that the investigator specify some common, underlying

probabilitstic structure that encodes the investigator’s assumptions about how outcomes oc-

curring among different sets of actors are relevant to each other. We define superpopulation

inference in contrast to single-sample inference, where all downstream analyses are assumed

to take place within the observed actor set V . These analyses might include imputing unob-

served links within this actor set, or projecting the behavior of these actors forwward in time.

These analyses only require that the investigator specify a probabilistic structure specific to

the observed actor set V .

2.1 Network superpopulations

To formally characterise network superpopulation inference, we require a probabilistic object

that can play the role of a network superpopulation in a statistical problem. In conventional

i.i.d. settings, a superpopulation is defined as an infinite population from which a finite

sample was drawn. Similarly, we define a network superpopulation as an infinite random

graph from which we can obtain finite network samples by choosing finite subsets of actors

and observing only those interactions that take place between them. Formally, we follow [31],

and define an actor-indexed stochastic process that can serve as a network superpopulation.

Here, we use slightly different notation from [31] to emphasize the relationship to the data

analysis settting.
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Let V be a countably infinite set of actors, so that each finite subset V ⊂ V corresponds to

a set of actors whose interactions we could potentially observe. From this infinite actor set

V, we define the interaction graph population as follows

Definition 1 (Random Graph Process). A random interaction process YV is a stochastic

process indexed by a countably infinite vertex set V whose finite-dimensional distribution for

any finite subset V ⊂ V defines an interaction graph YV with vertex set V . Denote the law

of YV as PV and the law of a finite-dimensional projection YV as PV .

Using random graph processes as building blocks, we write the network superpopulation

estimation problem as follows. Let Y0,V be a random interaction process that is the true

superpopulation of interest, let P0,V be the law of the superpopulation process, and let P0,V

be the finite-dimensional distribution for the interaction graph YV of an actor set V . To

estimate the law of the population process, we propose a model family PΘ,V ≡ {Pθ,V}θ∈Θ

indexed by (potentially infinite dimensional) parameter θ ∈ Θ, so that for each θ, Pθ,V is

a population law. For any finite actor set V ⊂ V, the population-level family implies a

corresponding finite-dimensional model family. Let PΘ,V ≡ {Pθ,V }θ∈Θ,V ∈V be the projected

model family, where for each value of θ, Pθ,V is a finite-dimensional distribution of Pθ,V.

Operationally, maximum likelihood inference for superpopulation estimands proceeds iden-

tically to single-sample inference – to draw inferences from a particular observed interaction

graph YV , we derive an estimator for θ from the projected model family Pθ,V and we obtain

an estimate θ̂V from YV . The superpopulation case only differs in that we specify and inter-

pret the finite model for YV as a finite-dimensional projection of a superpopulation model,

and thus interpret the estimate θ̂V as an estimate of the parameters of both a sample law Pθ̂,V
and a superpopulation law Pθ̂,V. This interpretation translates practically into plugging Pθ̂V ,V
into downstream analyses (with accompanying uncertainty estimates), for example, testing

whether separate samples were drawn from a similar population by comparing parameter

estimates, predicting interaction outcomes within a new actor set, or shrinking together

estimates from separate samples in a hierarchical model.

There are two points of our construction of the network superpopulation inference problem

that we wish to emphasize.

First, despite being infinite objects, random graph processes have distinct properties and

play a distinct role in our statistical arguments from sequences of increasingly large random

networks that are often invoked in asymptotic analysis of network models for single-sample

inference. The key mathematical difference between these objects is that the increasing ran-
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dom graph sequences that have been deployed before in large-sample consistency arguments

are not required to be Kolmogorov consistent. For example, in [3] , the authors define a

sequence of ever-larger exchangeable random graphs whose expected degree, ρn, decreases

with n so that the limit of the sequence has a vanishing network density, achieving a so-

called sparse limit. As we discuss later in Section 3, it has been shown that no extension

of a non-trivial exchangeable random graph process has a sparse limit [27], so this sequence

cannot define a consistent stochastic process. This is not a problem for the purposes of a

single-sample argument, where the limit of the infinite sequence serves as a deterministic

analogy for a large but finite network sample YV – for example, such an analogy provides

some guidance about how much information we can expect to recover about the internal

structure of a large network sample with very few realized links.

On the other hand, a random graph process that is shared by different network samples is an

essential element of superpopulation problems. In this case, the law being estimated must

simultaneously define outcome distributions on differing actor sets to justify propagating

inferences from one actor set to another. In the arguments that follow, we use the random

graph process to test whether inferences obtained from distinct finite samples drawn from

the same process maintain a particular type of invariance. Thus, instead of using this infinite

object to generate a limit, we use it to interrogate relationships between analyses performed

on its finite projections.

The second point we wish to emphasize is that the idea of a random graph process is not

new; the critical part of Definition 1 is the representation we use for the random graph pro-

cess. Following [31], we take a “top-down” view of this stochastic process rather than the

“bottom-up” view that is commonly taken in analyses of the statistical properties of net-

work models (note that we emphasize statistical properties here because top-down stochastic

process representations have appeared in the analysis of generative properties of network

models, e.g., [6]). In particular, previous treatments have represented an infinite stochastic

process as the large-sample limit of a generating process, defining finite random networks as

the primitive mathematical objects from which the stochastic process is derived by extension

. On the other hand, we represent a stochastic process here as the primitive mathematical

object from which finite random graphs are derived by projection.

This difference in representation is important because, while all random interaction processes

have both representations, the top-down representation allows an investigator to formally

specify global properties of a network superpopulation without specifying a generative mech-

anism for achieving those properties. By allowing investigators to specify properties of a
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superpopulation that they are explicitly unable to capture in the generative working model,

this top-down representation can serve as a powerful tool for assessing the impact of model

misspecification in superpopulation inference.

2.2 Misspecification and superpopulation estimation

When the model we propose is misspecified, so that P0,V 6∈ PΘ, we cannot rely on the

nominal interpretation of parameter estimates alone to draw scientific conclusions. Instead,

we hope the estimator itself has some properties that can reveal some of the structure of

the underlying process. One such property is stability, or an estimator’s tendency to map

similar generating processes to similar values in the parameter space.

Many notions of stability have been proposed in the Statistics literature, and it has played a

particularly large role in the misspecification literature [39], although the idea has generally

been presented in terms of consistency. Huber [19] most famously showed that the MLE con-

verges to a point in the parameter space that Sawa [29] called the “pseudo-true” parameter,

while [36] showed asymptotic normality. These results suggest that in large samples, while

the MLE may not be directly interpretable, it is stable between replications of that sample.

This notion underlies many of the asymptotic arguments made about the effectiveness of

network models for single-sample estimation problems.

However, misspecification raises different concerns in superpopulation estimation problems

than in single-sample estimation problems. In this case, we do not only require stability

across replications of the same network sample YV ; we also require stability across samples

drawn from distinct actor populations. Thus, the convergence results for misspecified MLE’s

are not as useful for establishing the stability we require of the MLE in this case. Here, we

will use different properties of the pseudo-true parameter to develop a notion of stability

more appropriate for the superpopulation context.

For a given sample distribution P0,V and sample model Pθ,V , the pseudo-true parameter θ̄V

is given by

θ̄ = arg maxθ∈Θ EP0 [logPθ,V (Y )], (1)

or the maximizer of the expected log-likelihood. Note that when the model is correctly

specified, so that there is some parameter θ0 such that P0,V = Pθ,V , then θ̄ = θ0. Even

under misspecification, this quantity has many interpretations in the context of maximum
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likelihood estimation. We can arrive at the pseudo-true parameter by inverting several

desirable properties of an estimator. For example, recalling that Fisher consistency is one of

the defining properties of the MLE, θ̄ is value in the parameter space Θ for which the MLE

is Fisher consistent. Additionally, from the more general framework of estimating equations,

θ̄ is the quantity for which the score equation defined by Pθ,V is unbiased. Finally, it can be

shown that the optimization in Equation 1 is equivalent to minimizing the KL divergence

KL(P0||Pθ) among all models in PΘ,V [29]. Thus, the effective estimand of the MLE can be

interpreted as the KL projection of the true distribution of YV into the finite-dimensional

model family PΘ,V .

Most importantly, Spokoiny [33] established finite sample concentration inequalities for the

MLE around the pseudo-true parameter θ̄ regardless of model misspecification or dependence

in the distribution of YV . We can use this result to characterize the behavior of the MLE

across finite samples indexed by different finite actor sets V . Heuristically, when we compute

the MLE from a given sample YV , the estimator is effectively targeting the pseudo-true

parameter θ̄. We find this intuition so compelling that we refer to θ̄ as the effective estimand.

Recall that the critical characteristic of the network superpopulation is that it encodes

properties of the network generating process that are invariant across the set of actors V

taht indexes the sample. It is therefore natural to expect that, if we are going to interpret

a parameter estimate θ̂V as a superpopulation parameter estimate, the estimator should be

estimating a quantity that does not depend on the index set V . This idea underlies the

following superpopulation parameter stability criterion.

Proposition 1. For parameter estimates to be interpreted as superpopulation parameters,

for any finite sample YV , the effective estimand θ̄V of the estimator θ̂V should not depend on

the indexing set V .

Remark 1. Note here that this criterion only puts a condition on the effective estimand

θ̄V , and not on θ̂V itself. For the purposes of this paper, we consider the semantic argument

that an estimator that does not satisfy Proposition 1 is estimating a different parameter for

different index sets V to be powerful enough to motivate an investigator to seek a different

modeling strategy. In a separate paper [11] in which we treat the “effective estimand” idea in

greater generality and detail, we push through the large deviation bounds in [33] to describe

how violations Proposition 1 affect the distribution of θ̂ and the properties of downstream

inferences. However, in our simulation study in Section 8 we do see that the parameter

vector estimate θ̂ does concentrate around the effective estimand θ̄ as expected.

The criterion in Proposition 1 is not always directly verifiable, because computing the effec-
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tive estimand θ̄V requires computing an expectation over the true distribution P0,V . However,

in the case of social network modeling, there are often known properties of the true social

process that we were not able to encode directly into the model, but which we can use to

check whether the effective estimand could remain stable if P0 had this property. If the

effective estimand changes with V , this suggests that the model may not be useful for super-

population inference. In the following sections, we show that this criterion is violated when

the proposed network model does not account for the sparsity property of social networks.

3 Sparsity

Sparsity is one of the most salient features of social networks. In this section, we will formally

define this property so that we can characterize the behavior of the effective estimand of

the MLE when the true social process is sparse. As defined specifically in the context

of networks, sparsity is the phenomenon that, in large social interaction network samples,

an overwhelming proportion of actor-pairs engage in no interactions, and that the larger

the network sample is, the more dominating this proportion of zeros becomes. Formally,

we represent this by encoding the social interactions in an outcome space Y in which one

particular value in this space that corresponds to “no interaction”, which we will call 0. In

the case of binary or count-valued outcomes, this is simply the number 0, while in the case of

timeseries of point-valued outcomes, this may correspond to the timeseries that is identically

0 at every point in the observation interval.

Sparse graphs have been a common topic in both the Probability and Statistics literatures.

Bickel and Chen [3] and Bollobás et al [20], among others have approached sparsity in terms

of sequences of distributions over random graphs of growing size or expected size. Notably,

these definitions do not constrain the sequence to be Kolmogorov consistent, and so elements

of the sequence cannot be understood to be drawn from the same population process. Instead,

the limits of these sequences are meant to serve as analogies for single network samples with

a relatively small number of observed ties. In short, existing definitions of sparsity have

been more amenable to describing the properties of single network samples rather than the

properties of the underlying superpopulation process.

Because we wish to focus on superpopulation questions, we require a categorically different

different definition of sparsity. For ease of discussion, we define a density operator, which

corresponds to the proportion of dyads in an interaction graph with corresponding nonzero

interactions.
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Definition 2 (Density Operator). Let YV be an interaction graph with vertex set V . Fix an

element of the outcome space Y to be zero, denoted by 0, and define the indicator random

variables Aij = I{Yij 6=0} for each i < j ∈ V .

The density operator D with respect to the element 0 has the form

D(YV ) =

∑
ij Aij(|V |
2

) ,

giving the proportion of components of YV that are non-zero.

Intuitively, a population process is sparse if, as we sample additional vertices from the

population process, the expected density of the sampled interaction subgraph converges to

zero. Formally,

Definition 3 (Sparse Interaction Graph Process). Let YV be an interaction graph process

on V. YV is sparse if and only if for any ε > 0 there exists an n such that for any subset of

vertices V ∈ V with |V | > n the corresponding finite dimensional interaction graph YV has

the property E(D(YV )) < ε.

A key consequence of this definition is that any increasing subgraph sequence defined with

respect to a sparse random graph process has a sparse limit, i.e., for any increasing sequence

of vertex sets (Vn) ordered by subset inclusion, D(YVn)→ 0 as n grows large. This property

is invariant to the scheme used to construct the subgraph sequence.

It is also useful to define the sparsity rate of a process, which characterizes how quickly the

densities of growing samples drawn from a given population process converge to zero.

Definition 4 (Sparsity Rate). Let (Vn) be an increasing sequence of vertex sets ordered by

subset inclusion. We say an interaction graph process YV has sparsity rate ε(n) iff there

exists some finite positive constant C such that for any sequence (Vn),

E[D(YV )]

ε(n)
→ C

as n → ∞. Similarly, we say interaction graph processes defined on the same index set V,

YV and Y ′V, have the same sparsity rate iff there exists some finite positive constant C such

that for any sequence (Vn),
E[D(YV )]

E[D(Y ′V )]
→ C

as n→∞.
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3.1 Sparsity misspecification

Sparsity is an attribute of real-world social networks that may or may not be well-represented

by a generative network model. When the sparsity of the real process is not correctly

represented by the inferential model, we say that the model is sparsity misspecified. Formally,

sparsity misspecification occurs when there is no member of the inferential model family with

the same sparsity rate as the true superpopulation process. Formally,

Definition 5 (Sparsity Misspecification). For an inferential family PΘ,V and true population

process P0,V, we say that the inferential family is sparsity misspecified if

Eθ[D(YV )]

E0[D(YV )]
→ 0 or ∞ ∀β ∈ B, γ ∈ Γ, (2)

where Eβ,γ and E0 are expectations taken with respect to Pβ,γ,n and P0,n, respectively.

We give several examples of sparsity misspecification in the remainder of this section.

3.2 Exchangeable random graph models with covariates

Sparsity misspecification is particularly prominent in model families that are built on local

assumptions about how individual actors make decisions to interact. Exchangeable random

graph models form the most prominent class of such generative network models. These

models assume that the likelihood for the interaction network is invariant to permutations of

the actors in the network – this translates to joint exchangeability of the rows and columns

of the adjacency matrix. We consider the extension of these models to the case where actors

are exchangeable up to observed covariates. These models are appealing because they imply

that an observed network sample can be decomposed into a set of conditionally independent

replications given sets of observed and potentially unobserved covariates. They also imply

that independent predictions can be made at the dyad level.

We pay special attention to the simplest subclass of exchangeable random graph model that

treats all pairwise outcomes in the network as conditionally independent given observed pair-

wise covariates. These models reduce network generation problem to a regression problem

on the vectorized adjacency matrix. Generally, these models are specified as a generalized

linear model, and have been proposed with binary, count-valued, and point process-valued

outcomes (see, for example, [28, 35, 16, 34]). These assign a particular observed social
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interaction graph YV with covariates XV a likelihood of the form:

P (YV | XV ) =
∏
ij

P (Yij | Xij). (3)

We call models in this subclass conditionally independent dyad or CID models. This model

class subsumes models that assume node-level covariates, as these can be encoded as dyad-

level covariates.

Exchangeable random graph models also include more complex specifications that assume

conditional independence between the dyads given unobserved covariates. These models

have seen an explosion of interest with a wide variety of structures proposed for the latent

covariate structure including latent single- and mixed-membership classes, latent positions,

latent eigenspaces, and their infinite- dimensional counterparts [24]. This class of models has

been unified under an array-exchangeability representation by Aldous and Hoover that, up to

permutation, maps these latent covariate processes to a single surface X on the unit square.

Given this surface, the network is generated by randomly assigning each actor a position Ci

so that the pairwise covariate for dyad ij is generated by querying X(Ci, Cj). Several recent

works have been dedicated to estimating this latent surface, called the graphon, directly

[5, 1]. Models with this structure induce the following likelihood on network samples

P (Y | X) =

∫
C

∏
i<j<n

P (Yij | X(Ci, Cj))dF (C). (4)

Model specifications that mix latent and observed covariates have also been proposed in

several places, e.g., [16].

Several authors have noted that exchangeable graph models without covariates cannot be

extended to form sparse graph processes, or, in our current terminology, that these models

are sparsity misspecified. Orbanz and Roy state this most clearly: “If a random graph is

exchangeable, it is either dense or empty.” [27] They justify this statement with a simiple

law of large numbers argument. With appropriate conditions on observed covariates X, we

can extend this result to exchangeable random graph models with covariates, including CID

models.

Theorem 1. For a an exchangeable interaction process model PΘ,V, and corresponding co-

variate set XV, denote by Nθ ⊂ X the set of covariate vectors so that for a given θ ∈ Θ,

Pθ(Yij 6= 0 | Xij ∈ Nθ) = 0. Assume that for each θ ∈ intΘ, the limiting proportion of

covariate vectors Xij ∈ Nθ is 1 − ε for some nonzero ε. If this is the case, the model is
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sparsity misspecified.

The argument here is straightforward. The covariate vector Xij simply parameterizes the

surface W described by Aldous and Hoover, so that every Xij defines a corresponding surface

WXij . The marginal probability P(Yij 6= 0 | Xij) is the integral of WXij . Thus, if the limiting

proportion of covariate vectors that define a zero-integral latent surface W does not converge

to 1, then for some positive proportion of dyads, we will have latent surfaces with positive

integrals so that P(Yij 6= 0 | Xij) for these dyads, resulting in a limiting positive network

density by LLN.

Intuitively, unless the model is able to a priori exclude an arbitrarily high proportion of dyads

from interaction on the basis of the observed covariates Xij, it will be sparsity misspecified.

In most social network analysis applications, such a highly informative set of covariates is

not available – in fact, regression, latent variable, or combined modeling schemes are often

proposed precisely because so little is known a priori about the network’s structure.

In this case, it is possible to confirm sparsity misspecification a priori because these model

families only incude social interaction processes whose densities converge to positive con-

stants. Other non-exchangeable model families, for example preferential attachment, do

allow for sparse extensions and in these cases, it may be difficult to determine from a finite

sample whether a family is sparsity-misspecified. Families that include flexibility in param-

eters the determine sparsity rate, for example the power in a power law distribution, may

not be sparsity misspecified, but checking this is important. Many families that allow sparse

extensions lock in a particular functional form for the sparsity rate, which increases the risk

of sparsity misspecification.

4 Main Result: Moving Target Theorem

In the last few sections, we have established a statistical framework for representing su-

perpopulation inference, discussed conditions under which an estimate from a misspecified

model can be interpreted as a superpopulation quantity, and identified sparsity misspecifica-

tion as a common issue in network modeling. In this section, we bring these ideas together

and show that most MLE’s derived from sparsity-misspecified models do not admit a su-

perpopulation interpretation because their effective estimand is not invariant across samples

drawn from the same population.
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We introduce one final definition before we proceed to the theorem.

Definition 6 (Responsiveness). Let (Vn) be an arbitrary increasing sequence of vertex sets

from V, ordered by subset inclusion. We say an estimator is responsive to a statistic T (YV )

under a true generating process P0,V if and only if

|Eθ̄Vn (T (YVn))− E0(T (YVn))| = op(1), (5)

for any (Vn), or when the distribution indexed by the effective estimand gives an asymptoti-

cally unbiased prediction for the statistic T (YV ).

Note that responsiveness is generally considered a minimum requirement for an estimator. It

implies that the estimator’s plug-in distribution yields an asymptotically unbiased prediction

of the test statistic.

When a sparsity misspecified model is responsive to the network density D(YVn), we can show

that the the MLE does not estimate a population parameter because, while a population

parameter remains invariant across samples from the same population, the effective estimand

varies as a function of the size of Vn. In essence, if PΘ,V is sparsity misspecified, but the

members of PΘ,V are able to provide good pointwise approximations to P0,Vn for each n,

then the fact that PΘ,V is sparsity misspecified implies that the members that provide these

appoximations at different sample sizes are necessarily different.

Theorem 2 (Moving target theorem). Let (Vn) be an arbitrary increasing sequence of vertex

sets from V, ordered by subset inclusion. Suppose that the following hold:

1. The inferential family PΘ,V is sparsity misspecified for the true population process P0,V.

2. The inferential model is responsive to the sample density D(YVn) under the true popu-

lation process and

|Eθ̄Vn (D(YVn))− E0(D(YVn))| = δ(n). (6)

3. The rate of the effective estimand’s plug-in prediction bias δ(n) and the sparsity rate

ε0(n) of P0,V are such that, for some finite constant C,

δ(n) + ε0(n)

ε0(n)
→ C. (7)

Then, θ̄Vn varies with n in the sense that for any n, there exists an n′ > n such that θ̄Vn 6= θ̄Vn′
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Proof. Because the effective estimand’s plug-in prediction bias for the network density |Eθ̄Vn (D(YVn))−
E0(D(YVn))| is of equal or smaller order than the sparsity rate of P0,V, Eθ̄Vn (D(YVn)) conveges

to zero at rate ε0(n). But because the family PΘ,V is sparsity misspecified, there is no single

model Pθ,V whose expected densities can follow this rate. Thus, for any n, there exists an n′

such that θ̄Vn 6= θ̄Vn′ .

This result implies that for network superpopulation inference problems, sparsity misspecified

models violate Proposition 1. In particular, it shows that estimators computed from samples

of differing size are effectively estimating distinct quantities even if they are drawn from the

same network superpopulation. This, in turn, implies downstream analyses of these estimates

that rely on a stable notion of a network superpopulation, for example, hypothesis tests or

shrinkage schemes, are ill-defined. Even in cases where the desire is to simply interpret

the parameter estimates for theoretical context, this inhomogeneity of interpretation with

respect to size presents challenges when applying models that were developed for analysis

of small networks (e.g., Sampson’s monastery) to large-sacle social networks. Depending on

the application, establishing a meaningful scale for such parameter estimates may not be

possible.

We demonstrate these effects with the Poisson regression example introduced above.

4.1 Example: Poisson regression with binary covariate

Let there be a superpopulation of inventors, from which we have sampled n individuals. Let

YVn be a matrix recording the number of pairwise patent collaborations that have taken place

between the n sampled inventors, so that Yij is the number of times inventor i and inventor

j appeared together on the same patent application. Denote the true distribution of YVn as

P0,Vn . For each entry ij of YVn , let Xij be a binary covariate that indicates whether inventors

i and j work for the same firm. The investigator is interested in how this covariate is related

to the outcome YVn , and in particular in comparing this outcome across networks, to make

statements about whether within-firm collaborations are more prominent in one industry

than another. The investigator is also aware that the true interaction process P0,V is sparse.

Despite this knowledge, the investigator proposes a finite-dimensional model family PΘ,Vn

for the sample that has the form of a Poisson regression model

Yij
⊥⊥∼ Pois(exp(θ0 +Xijθ1)) ∀i < j < n, (8)
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where the parameter vector θ ≡ (θ0, θ1) can take values in Θ ≡ R2. According to standard

interpretations of GLM coefficients, θ0 is the log of the interaction rate of any “between-firm”

inventor pair, while θ1 is the log ratio of interaction rates between any “within-firm” and

any “between-firm” inventor pair.

Assume as we have throughout that we have a fixed increasing sequence of sets of actors

(Vn), ordered by subset inclusion. For the purposes of this problem, we also assume we have

a corresponding sequence of covariate arrays (Xn) associated with each actor set in (Vn).

Because this is an exponential family, the effective estimand has a particularly appealing

form that mimics the form of the MLE:

θ̄0n = log

(∑
ij E0(Yij | Xij = 0)(1−Xij)∑

ij(1−Xij)

)
(9)

θ̄1n = log

(∑
E0(Yij | Xij = 1)Xij∑

Xij

/∑
E0(Yij | Xij = 0)(1−Xij)∑

(1−Xij)

)
. (10)

We maket he following assumptions about the true process P0,V to characterize the effective

estimands. Consider the case where E0(Yij | Xij) is finite for all ij, and that for some finite

n′′ > n′, the expected number of within-firm and between-firm interactions are nonzero.

Under these assumptions, consider how θ̄n behaves as we allow n to vary. As n becomes

large, one or both of the between-firm and within-firm groups of dyads must grow at the

same rate as the total number of dyads, that is, at least one of
∑

ij(1 −Xij)/
(
N
2

)
→ c > 0

and
∑

ij Xij/
(
N
2

)
→ c > 0 must hold. WeLOG, assume that the number of between-firm

dyads scales with the total number of dyads.

According to the sparsity assumption, the expected proportion of nonzero dyads among the

between-firm dyads converges to zero with rate ε0(n). It can also be shown that the ratio

in Equation 9 converges to 0 with rate ε0(n), and by Taylor expanding the expression for

Eθ̄(D(YVn)), we can see that the difference with E0(D(YVn)) converges to zero with rate ε0(n).

Thus, this model is responsive to D(YVn) with the appropriate rate, and the moving target

theorem applies. Indeed, because θ̄Vn is a function of a ratio with rate ε0(n), that θ̄Vn varies

with n is clear even without this general result.

In particular, as the proportion in Equation 9 falls to zero, θ̄0n → −∞. Indeed, the nested

structure of the problem carries forward the sample averages in Equation 9 and Equation 10

as we increment n, so θ̄0Vn traverses all of the values between its finite value at n′′ and −∞
rather smoothly in n, so we expect that for all finite samples with n > n′′, the value of θ̄0Vn
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will depend strongly on n.

This is enough to show that the effective estimand varies with sample size, but we can also

examine θ̄1Vn . Depending on whether the within-firm group of dyads grows at a slower rate

or the same rate as the between-firm group of dyads, θ̄1Vn may either diverge or converge to

an arbitrary constant depending on the exact growth rate of the between-dyad group. In the

latter case, θ̄1Vn can show convergent behavior, so that the effective estimand could serve as

a meaningful quantity for scientific comparison. However, this behavior relies on a strong

assumption about covariate behavior that may be difficult to confirm in practice.

5 Conditionally Independent Relationship Models

So far, we have established that sparsity misspecification is difficult to avoid and that sparsity

misspecified models have little hope of yielding scientifically meaningful parameter estimates

for superpopulation inquiries. As a solution to this problem, we propose a model class

that has a similarly intuitive structure to CID or exchangeable random graph models, but

which explicitly separates some superpopulation quantities of interest from the sparsity of

the network generating process. By redefining the problem in this way, we obtain a set

of summaries of network samples that we can expect to remain stable between samples of

different size, regardless of the sparsity of the true network generating process. We call this

class of models conditionally independent relationship, or CIR models.

For our discussion of CIR models, we shift notation slightly. To make our notation more

compact, WeLOG we fix a particular increasing sequence (Vn) of vertex sets, ordered by

subset inclusion, and only write the subscript n instead of Vn.

In CIR models, we assume that the dyad-level observations are drawn from a zero-inflated

process. This corresponds to the generative intuition that in order to support an observable

interaction, two actors must first have an unobservable social relationship. Conditional

on this set of relationships, observed interactions are assumed to have the same conditional

independence structure as CID models, and to have a distribution goverened by the paramter

β. See Figure 2.

Formally, we write the law of the observable interaction process Y in terms of an unobserv-

able interaction process R, which we call the relationship process. R is itself a binary random

interaction process, with finite-dimensional samples Rn, which we call relationship graphs.

To generate a network sample Yn from law Pn, we follow two-stage generating process, where
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Figure 2: (Left) Diagram of CIR generation process, where gray ties are “relationships” and
blue ties are observed interactions. To generate in observable interaction, a pair of actors
much first have a relationship. (Right) The observed network sample, where relationships
with no observed interactions are indistinguishable from dyads with no relationship.

a relationship graph Rn is drawn first, and conditional on this graph, the observered inter-

actions Yij are drawn independently. For each ij where Rij = 0, Yij is set deterministically

to 0. Thus, while Rn itself is unobserved, it is known that Rij = 1 whenever Yij > 0.

We parameterize CIR inferential families with a parameter vector θ = (β, γ) that we divide

into parameters of interest β and nuisance parameters γ. The modeling family assumes that

the conditional process Y | R has a simple structure parameterized only by the parameters

of interest β, while the relationship process R has a complex structure that may be pa-

rameterized by the entire vector θ, including the potentially infinite-dimensionsal nuisance

parameter vector γ. We write the marginal likelihood for Yn as the joint likelihood of Rn and

Yn with the unobserved elements of the latent process integrated out. Thus, the likelihood

for Yn becomes:

Pθ(Yn | Xn) =
∑
R

Pθ(Rn | Xn)Pβ(Yn | Xn, Rn). (11)

=
∑
R

Pθ(Rn | Xn)
∏

Pβ(Yij | Rij = 1, Xij)
Rij . (12)

Note that CID models are a special case of CIR models that specify R as an independent

process, so that each entry of R is conditionally independent. The network regression models

referenced above take this a step further and specify R as a trivial process where each entry

of R is deterministically 1.
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The CIR structure decouples the conditional interaction process Y | R from the sparsity rate

of Y process. In particular, because we assume the conditional process Y | R is conditionally

independent between dyads, it only contributes a constant factor to the sparsity rate of the

marginal process Y , while the law of R controls the functional form of the sparsity rate.

Thus, an estimate of the parameter vector β based on the conditional process Y | R has the

potential to define a summary of a network sample Yn that is stable across sample sizes.

Writing down an estimator of β with the desired sparisty-invariant property is non-trivial. If

R were observable, we could obtain an MLE for β based only on the conditional distribution

Y | R without having to model the relationship process. However, because the relationships

status Rij for a given dyda ij is unknown if Yij = 0, a model for R is necessary to marginalize

over these missing components. Unfortunately, because the marginal model for Y has the

same sparsity rate as the model for R, and defining any model with the correct sparsity

rate is diffucult, defining the problem in terms of a CIR family alone does not circumvent

the sparsity misspecification problem. We also require a different inferential method is able

to isolate the information in the conditional process Y | R from any specifiation of the

relationship process R. We develop such a method in the next section.

6 Truncated Inference for CIR models

In the previous section, we identified the conditional interaction process Y | R as a sparsity-

invariant portion of a network generating process, but noted that inferring any parameters

of this process using the MLE would require the correct specification of a sparse process

R. Our desire for inference that is invariant to this nuisance process R motivates a partial

likelihood approach. Partial likelihood, proposed by Cox [8, 9], and rigorously treated by

Wong [38], is an approach to estimation problems where the full likelihood is parameterized

by a potentially infinite-dimensional parameter vector, but the parameters of interest are a

finite subvector. Partal likelihood approaches estimate the parameter of interest in a way

that is invariant to the nuisance parameters.

In general, to use this approach, we apply a transformation to the sequence of data Y 7→
(W,V ) so that the full likelihood can be factorized as

Pθ(Y ) =

[
n∏
i=1

Pθ(wi | v1,··· ,i−1, w1,··· ,i−1)

][
n∏
i=1

Pβ(vi | v1,··· ,i−1, w1,··· ,n)

]
. (13)
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When the above factorization holds, we can use only the second factor in Equation 13 to

construct a partial likelihood for β. Maximizing the partial likelihood yields a maximum

partial-likelihood estimator for β.

β̂MPLE
n = arg maxβ

n∏
i=1

Pβ(vi | v1,··· ,i−1, w1,··· ,i) (14)

Because the partial likelihood has no dependence on the nuisance components of θ, this

estimation procedure is invariant to the portion of the data-generating process depending

on these components of θ, at the cost of some efficiency.

By constructing a partial likelihood, we aim to design an inference procedure for estimating

β from a model for Y | R without specifying a model for R. In Section 6.1, we show

that the structure of CIR models makes them amenable to a particularly simple partial

likelihood approach. We call this approach truncation because the factor of the likelihood is

the zero-truncated conditional interaction distribution – i.e., the conditional distribution of

interactions Yij given that they are nonzero. In Section 6.2 we give conditions under which

this estimatior is well-behaved and in Section 6.3 we compare the efficiency of the partial

likelihood estimator to a correctly specified, full-likelihood estimator.

6.1 Derivation

Because our goal in proposing CIR models was to decouple the process controlled by β and

the process that controls the sparsity of the data, it would be natural to split the data along

these lines. Because the density of the sample only depends on the indicators Aij = 1Yij>0

for each ij, we apply the transformation Y 7→ (A, {Yij : Aij = 1}). Writing the likelihood

Equation 11 in the form of Equation 13, we obtain

Pθ(Y | X) =

∏
ij

∑
Rij

Pθ(Rij | Akl<ij, X)Pβ(Aij | Rij, Xij)
Rij

[∏
ij

Pβ(Yij | Aij, Xij)
Aij

]
(15)

=

[∏
ij

Pθ(Aij | Akl<ij, X)

][∏
ij

Pβ(Yij | Aij, Xij)
Aij

]
(16)

Rewritten in this way, we see that the second factor depends only on β, with no depen-

dence on the nuisance parameter γ. This follows because Rn, and thus γ, only affects the
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distribution of Yn through the An – that is, the existence of a relationship only affects the

probability that the interactions along a dyad are nonzero, not the whole interaction distri-

bution. Thus, conditional on An, the distribution of Yn does not depend on γ, yielding the

desired invariance to the relationship process.

For convenience, we define the following shorthand for the pieces of Equation 16:

fβ(Yn | An) ≡
∏
ij

Pβ(Yij | Aij, Xij)
Aij (17)

gθ(An) ≡
∏
ij

Pθ(Aij | Akl<ij, Xn) (18)

These are, respectively, the conditional probability of Y givenA, and the marginal probability

of A. We call fβ(Y | A) the truncated likelihood. Using this notation, maximum partial

likelihood estimator of β is given by

β̂MPLE
n = arg maxβ fβ(Yn | An), (19)

or maximizing the truncated likelihood. We refer to this estimator as the truncated estimator.

6.2 Characteristics of the truncated estimator

To characterize the behavior of the truncated estimator, we focus on the case where the

true population P0,V exhibits a CIR structure, with an arbitrary relationship process R0,V

and a conditional independence structure for the YV conditional on RV from the relation-

ship process. As before, we assume that P0,V is sparse. We also assume that the inferential

conditional model for Yij | Xij, Rij is correctly specified. We find this to be a reasonable as-

sumption because under the conditional independence structure, the form of the conditional

distribution would be straightforward to check and modify until a reasonable specification

is achieved.

In this setting, we note first that by definition, the truncated likelihood cannot be sparsity

misspecified. For any sample size n, upon conditioning on An, we have restricted our atten-

tion to a set of dyads where Rij = 1 for each included dyad. While the model and the true

generating process may disagree in some ways, because the model does not make a statement

about the sparsity of the observable process YV (this is determined by the unspecified process

for the relationships RV), it cannot disagree on a sparsity rate.
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Although we are concerend primarily with superpopulation inference in this paper, it is

also useful to note that the truncated estimator has desirable single-sample properties –

ideally an estimator with both of these properties in superpopulation inference problems so

that we can establish that estimates that are stable across indexing sets also encode useful

summaries of the individual samples. For the rest of this subsection, we discuss some single-

sample properties of the truncated estimator. Note, however, that we assume the same

stochastically consistent asymptotic frame that we introduced in Section 2, so all sequences

in this section correspond to increasing subgraphs, indexed by n, drawn from the same

network superpopulation..

Overall, the truncated likelihood corresponds to an especially simple case of partial likelihood

first treated in the literature as “conditional likelihood” by [23, 2, 14], which correspond to

full likelihoods of derived sub-experiments of the original data generation (Cox). In this

case, consider an experiment with a sampling mechanism that only records dyads with

observed interactions and ignores all other dyads. The full likelihood for this experiment

would correspond exactly to the truncated likelihood derived from the original experiment.

Heuristically, because the conditioning on An induces mutual independence between each

Yij, and also independence between Yij and Ajk 6=ij, the truncated likelihood has the form

of a likelihood with independent observations, and can thus be shown to be well-behaved

when the truncated likelihood fβ is shown to meet any standard set of sufficient conditions

(e.g., Doob, Wald, Wong) with one modification. One major difference between this and

the standard likelihood setting is that, if we treat the truncated likelihood as a conventional

likelihood for a sub-experiment, the sample size of the sub-experiment is a random variable.

To obtain standard consistency and asymptotic normality properties, we must add an extra

condtion that this effective sample size goes to infinity.

The effective sample is made up dyads for which the conditional distribution fβ(Yij | Aij, Xij)

is non-degenerate. The conditional distribution of Yij can be degenerate for one of two reasons

– either Aij = 0, in which case Yij is trivially 0, or the distribution of Yij given that it is

nonzero is degenerate, as is the case when Yij is binary. Let Bij be an indicator for dyads

where this second kind of model-based degeneracy occurs. Then Mn =
∑

ij(1 − Aij)Bij is

the effective sample size for the truncated likelihood.

To apply standard consistency or asymptotic normality conditions, we only need to add

the condition that Mn → ∞ where the type of convergence is dictated by whether the

investigator wishes to have prove weak or strong consistency. Convergence rates for these

results can be stated in terms of Mn. In standard cases where all Yij have non-degenerate
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nonzero distributions – for example, if the Yij are Poisson distributed – the rate at which

Mn grows in n is dictated by the sparsity rate of the relationship process R0.

To show how such an argument can put pushed through in a rigorous manner, we give

some details of a consistency argument, modeled after Wong’s treatment of the more general

partial likelihood case.

6.2.1 Example: Consistency

In this section, we lay out the conditions for consistency of the MPLE in general, and provide

some simplifications of these conditions for the truncated likelihood.

Let β0 ∈ B be the true value of the conditional interaction parameter. Following Wong [38],

we define the following quantities:

RN(β) =
∑
ij<N

log(fβ0(Yij | Aij)/fβ(Yij | Aij)) (20)

IN(β) = Egβ0
RN (21)

JN(β) = Vargβ0
RN (22)

MN(β) = RN(β)− IN(β) (23)

RN(β) is the observed log-likelihood ratio up to observation N , IN(β) and JN(β) are

the expectation and variance of this quantity taken with respect to the complete data

model, respectively, and MN(β) is the residual. Further, we define the lower-case quan-

tities rij(β), iij(β), jij(β),mij(β) to denote the individual terms of the corresponding sums

above. We can now restate Wong’s consistency theorm in the context of our problem.

Theorem 3 (Consistency of Partial Likelihood Estimator (Wong 1986)). Suppose we have

a partial likelihood given by fβ(Yij | Aij), and true parameter β0. Suppose for each β 6= β0

there exists an open neighborhood Gβ whose closure does not contain β0 and that there are

constants δ > 0, ζN ↑ ∞ (which may depend on θ) such that

1. P (infβ′∈Gβ IN(β′)/ζN > δ)→ 1

2. JN(β′)/ζ2
N →P 0 for all β′ ∈ Gβ

3. The distribution of ζ−1
N MN(β′) is tight in C(Gβ), where MN = RN − IN and C(Gβ) is

the space of continuous functions on Gβ.
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4. There exists a compact subset K of B such that β0 ∈ intK, and P (infβ′ 6∈K RN(β′) ≤
0)→ 0.

Then β̂PL → β0.

The conditions for consistency in the partial likelihood context are quite intuitive. We need to

establish that the log-partial likelihood ratio RN evaluated with respect to the true paramter

β0 diverges in probability, and that the point of this divergence is unique in the closure of

B. The first three conditions establish divergence; the last condition establishes uniqueness.

The simple conditioning structure in the truncated likelihood, where each observation Yij is

conditioned on its own variable Aij simplifies checking the conditions for log-likelihood ratio

divergence. While the general proof must eliminate cases where the filtration associated with

the sequence of observations provides less and less unique information per observation, in

the case of the truncated likelihood, the sigma algebra that each observation conditions on

is disjoint. Thus, we may simplify the conditions for the truncated MLE’s consistency as

follows:

Theorem 4 (Consistency for Truncated Estimator). Assume that

1.
∑

R0
p→∞.

2. With probability 1, a proportion δ > 0 of ij where Aij = 1 has i
(ij)
β0

(β) > 0 given

Aij = 1.

3. There exists a compact subset K of B such that β0 ∈ intK, and P (infβ′ 6∈K RN(β′) ≤
0)→ 0.

then, the truncated estimator for β is consistent.

Proof. We only need to show that the first two conditions here imply the first three conditions

in Theorem 3. We can show this by LLN because of the independence of r
(ij)
β0

(β), so long

as i
(ij)
β0

(β) > 0 for some infinite subsequece of Aij’s. The first two conditions guarantee this

because having an infinite sequence of Rij’s guarantees an infinite sequence of Aij’s, and

condition one ensures that the expected log-partial likelihood ratio will be positive at each

of these. LLN implies tightness in the residuals, so this gives the first three conditions of

Theorem 3.
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There are several simplifications that can be made here for common network models. For

example, when the zero-truncated distribution is in the exponential familiy, the convexity

condition automatically satisfied.

6.3 Efficiency

In principle, the robustness of the truncated estimator should come at the cost of estimation

efficiency when compared to a full likelihood approach. However, quantifying this loss in

general is difficult because the form of Q, which is required for the specification of the full

likelihood, can be too complex to practically specify for realistic models. In this section, we

consider the efficiency lost in the worst case to establish intuition about which information

the truncated estimator leaves behind. In particular, we study the case where the Q is a

known deterministic process that fixes exactly which Rij = 1 and which Rij = 0, i.e. in

the setting where an oracle has told the investigator exactly which dyads are at risk of

interacting. In this setting, there is no missing information, so this serves as an upper bound

for the amount of information available for estimating β from the observed interactions Yn.

In this situation, we compare the information accrued by the full-data procedure to the

information accrued by the truncated procedure.

For convenience, we define the following quantities:

p
(β)
ij = Pβ(Aij = 1 | Rij = 1, Xij) (24)

l(β)(Yij) = logPβ(Yij | Aij = 1, Xij) (25)

l
(β)
tr (Yij) = logPβ(Yij | Aij = 1, Xij) (26)

These are, respectively the probability that a given dyad has an observed nonzero interaction

value given that it is at risk, and the truncated log-likelihood for a single dyad.

Under the assumption that the relationship graph R is fully available, all dyads ij for which

Rij = 0 (i.e., that have no relationship) are deterministically zero, and therefore contribute

nothing to either the full or truncated likelihood. We can then rewrite the full log-likelihood

lβ) for the whole dataset Yn in terms of the truncated log-likelihood lβtr:

l
(β)
tr (Yn) =

∑
ij∈R

Aij(l
(β)(Yij)− log(p

(β)
ij )) (27)

l(β)(Yn) =
∑
ij∈R

Aij log p
(β)
ij + (1− Aij) log(1− p(β)

ij ) + Aij(l
(β)
tr (Yij)). (28)
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First, we give an intuitive description of where the truncated procedure loses information

compared to the oracle procedure. We can express the Fisher Information as the negative

expectation of the Hessian of the log-likelihood. Partitioning the sample space according to

the non-zero observation indicator Aij, we obtain

I(β)
tr (Yn) = −

(∑
ij∈R

p
(0)
ij E0(∇2

β l
(β)(Yij) | Aij = 1)− p(0)

ij ∇2
β log p

(β)
ij

)
(29)

I(β)(Yn) = −

(∑
ij∈R

p
(0)
ij E0(∇2

β l
(β)(Yij) | Aij = 1) + (1− p(0)

ij )E0(β2
βl

(β)(Yij) | Aij = 0)

)
.

(30)

The expectation decomposition reveals that the truncated procedure loses information via

two lost comparisons. The most obvious lost comparison results from the fact that the

truncated procedure excludes all dyads ij that are observed to be zero so that Aij = 0.

Cleary, these zero dyads can contribute no information to the truncated procedure, so the

information contributed by these dyads appears in Equation 30 but not in Equation 29.

Because it corresponds directly to information lost by paring down the sample, we call this

loss of information the sample size effect.

The second lost comparison is more subtle, and corresponds to the lost counterfactual com-

parison of observed non-zero dyads to themselvs if they were instead observed to be zero.

In particular, because all dyads included in the truncated procedure have Aij = 1, there

is no information gained by observing that Yij > 0, so this must be subtracted off. This

corresponds to the negative term in Equation 29. We call this loss of information the iden-

tification effect because it results from confounding the data inclusion mechanism in the

truncated procedure with the interaction generation process.

To bound the information loss of the truncated procedure, representing the Fisher Infor-

mation as the variance of the score function is more convenient. Taking the gradient of

Equation 28 with respect to β, we obtain

S
(β)
tr (Yn) =

∑
ij∈R

AijS
(β)
tr (Yij) (31)

S(β)(Yn) =
∑
ij∈R

Aij

p
(β)
ij

+
1− Aij
1− p(β)

ij

+ AijS
(β)
tr (Yij). (32)

Using this notation, we can compare the resulting expressions for the Fisher Information of
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each procedure:

I(β)
tr (Yn) =

∑
ij∈R

p
(0)
ij Var(S

(β)
tr (Yij) | Aij = 1) (33)

I(β)(Yn) = Var0(S(β)(Yn)) (34)

= E0(Var0(S(β)(Yn) | An)) + Var0(E0(S(β)(Yn) | An)) (35)

=
∑
ij∈R

p
(0)
ij Var0(S(β)(Yij) | Aij = 1) +

∑
ij∈R

Var0(E0(S(β)(Yij) | Aij)). (36)

Note that the first term in Equation 36 is exactly equal to Equation 33, so the second term

corresponds to the information lost by using the truncated procedure instead of the oracle

procedure. When the variance is decomposed, as above, by partitioning the outcome space

of each Yij into the non-zero part, where Aij = 1 and the zero part where Aij = 0, this term

corresponds to the “between variance” of the score function between these two partitions.

As intuition would suggest, the information lost by the truncated procedure results from

being unable to compare zero and non-zero outcomes in aggregate.

By inspecting Equation 36, we can establish conditions under which the relative efficiency of

the truncation procedure with respect to the oracle procedure (defined in terms of the ratio

of any matrix norm of the information matrices) converges to a constant. In particular,

• Var0(S(β)(Yij)) is bounded for all ij.

•
(∑

ij Rij
2

)−1∑
ij∈R p

(0)
ij Var(S(β)(Yij) | Aij = 1)→ c2 where 0 < c2 <∞.

These conditions establish that no single dyad, even in the limit, provides infinite informa-

tion to the oracle or truncated procedures, and that the sample average of the information

contributed by each dyad to the truncated procedure converges to a positive constant.

6.4 Remark on computation

Computation of the truncated estimatior is highly efficient as it uses only dyads with nonzero

outcomes as opposed to the full
(
n
2

)
dimensional generalized adjacency matrix required by

full likelihood methods. In cases where Rij must be integrated out, the computation is on

the order of O(n2) for full inference, whereas the computation is on the order of O(
∑

ij Aij)

for the truncated inference. Thus, when the rate of information accumulation is the same,
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the ratio information accumulated per unit of computation if unbounded in favor of the

truncated procedure.

7 Analytical Examples

7.1 Analytical non-exchangeable sparse CID example

We consider a particularly simple case of a CIR model whose properties we can elicit an-

alytically. Suppose that we have an interaction network population and an ordering for

the vertex population V so that Rij are independent indicators for each ij given the index

of the smaller vertex i and the covariate vector Xij. In addition, suppose that we know

Pγ(Rij | Xij) = fγ(i,Xij) where f is a decreasing function of i if Xij is held constant. For

example, we may have

f(i,Xij) = logit−1(log(i)/i+ γ′Xij).

This setting allows us to consider cases where we have a CID model that is sparse. This

corresponds to having a covariate that sets the limiting marginal probability of seeing a

nonzero edge P (Aij | Xij) to zero, representing a different regime from the well-behaved

covariate regime considered earlier in which CID models were shown to produce a dense

limits. In this setting, we may concretely study how sparsity misspecification of f affects

inference.

For convenience, we define the following quantities:

q
(γ)
ij = Pγ(Rij = 1 | Xij) q

(0)
ij = P0(Rij = 1 | Xij) (37)

p
(β)
ij = Pβ(Aij = 1 | Rij = 1, Xij) p

(0)
ij = P0(Aij = 1 | Rij = 1, Xij) (38)

l
(β)
tr (Yij) = logPβ(Yij | Aij = 1, Xij) (39)

Quantities in the left-hand column are probabilities associated with the inferential model

parameterized by β and γ; quantities in the right-hand column are probabilities associated

with the true generative process, denoted with superscript (0). The rows define, respectively,

the probability that an at-risk dyad generates a nonzero interaction, the probability that a

given dyad is at risk, and the truncated log-likelihood of an interaction given that it is

nonzero.
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Because of the independence structure of the problem, marginalizing out Rmis is simple. The

observed data log-likelihood has the form

lβ,γ(Y | X) =
∑
ij

(1− Aij) log(1− q(γ)
ij p

(β)
ij ) + Aij

(
log(p

(β)
ij q

(γ)
ij ) + l

(β)
tr (Yij)

)
. (40)

We can now derive moving target and truncated efficiency results for this subclass of model.

Using this log-likelihood we can obtain the effective estimand that corresponds to β. Taking

an expectation with respect to the true generating process, we obtain

E0lβ,γ(Y | X) =
∑
ij

(1− q(0)
ij p

(0)
ij ) log(1− p(β)

ij q
(γ)
ij ) + q

(0)
ij p

(0)
ij log(p

(β)
ij q

(γ)
ij )+

q
(0)
ij p

(0)
ij E0

[
l
(β)
tr (Yij) | Aij = 1

]
.

(41)

Note that the first line corresponds to the Bernoulli log-likelihood for A (a consequence

of the independence assumption on R), while the second corresponds to the conditional

log-likelihood of Y give A.

Taking the gradient with respect to β,

∇β E0lβ,γ(Y | X) =
∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(
∇β p

(β)
ij

p
(β)
ij (1− p(β)

ij q
(γ)
ij )

)
+ p

(0)
ij q

(0)
ij ∇β E0

[
l
(β)
tr (Yij) | Aij = 1

]
.

(42)

∇γ E0lβ,γ(Y | X) =
∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(
∇γ q

(γ)
ij

q
(γ)
ij (1− p(β)

ij q
(γ)
ij )

)
(43)

We care about the case where the truth is sparse and has sparsity rate ε0(n):(
n

2

)−1∑
ij

q
(0)
ij ∈ O(ε0(n))→ 0 (44)
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In this context, sparsity misspecification manifests by definition as either∑
ij q

(0)
ij∑

ij q
(γ)
ij

→ 0 (Model for R too dense), or (45)

∑
ij q

(γ)
ij∑

ij q
(0)
ij

→ 0 (Model for R too sparse). (46)

Under these circumstances, we are able to show the following corollary.

Corollary 1 (Moving target for CID). Let Y be a sparse interaction process with sparsity

rate ε0(n) and Pβ,γ a CID model. Suppose that the following hold:

1. Pβ,γ is sparsity misspecified.

2. A identifies β in the presence of γ.

3. The absolute values of the gradient vectors ∇γ q
(γ)
ij are bounded for all ij, for all γ ∈ Γ.

4. The span of the gradient vectors ∇γ q
(γ)
ij include an all-positive vector.

Then for every n there exists an n′ > n such that β̄n 6= β̄n′.

We present the proof in the appendix.

7.2 Analytical Logistic-Poisson example

Here we show the consequences of moving target behavior in the context of a particular

model. We also demonstrate the efficiency calculation comparing the truncated estimator to

the an oracle estimator with full knowledge of the risk set.

Consider the following independent CIR model:

Rij | Xij ∼ Bern(logit−1((f(i), Xij)
′γ)) (47)

Yij | Xij, Rij ∼ Pois(λ
(β)
ij ) (48)

λ
(β)
ij ≡ exp(X ′ijβ) (49)

Assume that this model is sparsity misspecified for some true generative process. Denote

the true sparsity rate ε0(n) and the misspecified sparsity rate εγ(n).
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Suppose that for this example, the covariates X meet the following criteria.

1. Xij are bounded for each ij.

2. Xij includes one component that corresponds to an intercept (i.e. is 1 for all ij).

3. Xij cannot be reparameterized as dummy variables identifying k < |γ| groups.

Given the model specification, the probability gradients are given by

∇γ q
(γ)
ij = Xijq

(γ)
ij (1− q(γ)

ij ) ∇β p
(β)
ij = Xij(1− p(β)

ij )λ
(β)
ij . (50)

7.2.1 Moving target

Based on these functional forms, it is simple to show that the conditions given for the

covariates are sufficient to satifsfy conditions 2–4 in Corollary 1. By the corollary, this

implies that the effective estimand changes with size.

Taking the effective estimand score equations that correspond to γ and β, respectively, we

have for each n,

∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(
(1− q(γ)

ij )

1− p(β)
ij q

(γ)
ij

)
(f(i), Xij) = 0 (51)

∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(
(1− p(β)

ij )λ
(β)
ij

p
(β)
ij (1− p(β)

ij q
(γ)
ij )

)
Xij = −

∑
ij

p
(0)
ij q

(0)
ij

(
λ

(0)
ij

p
(0)
ij

−
λ

(β)
ij

p
(β)
ij

)
Xij (52)

To show that β̄n is not fixed, we can proceed by contradiction and see that if β̄n were fixed,

the score system would be overdetermined. Note in particular that we can rewrite the system:

∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(1− p(β)
ij q

(γ)
ij )

(1− q(γ)
ij )(f(i), Xij) = 0 (53)

∑
ij

(p
(β)
ij q

(γ)
ij − p

(0)
ij q

(0)
ij )

(1− p(β)
ij q

(γ)
ij )

(Gij(β))Xij = H(β) (54)

Where Gij and H are functions of β alone, and thus constants with respect to γ. This

formulation makes it clear that none of the score equations are redundant, and thus require

more that k = |γ| degrees of freedom to satisfy simultaneously.
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In this particular case, we can go further and characterize exactly how β̄n changes. Examining

the score equation for the intercept of β, we obtain

∑
ij

λ
(β)
ij

(
q

(γ)
ij

(
(1− p(β)

ij )

(1− p(β)
ij q

(γ)
ij )

)
+ p

(0)
ij q

(0)
ij

(
(1− q(γ)

ij )

(1− p(β)
ij q

(γ)
ij )

))
=
∑
ij

λ
(0)
ij q

(0)
ij (55)

Assuming that γ̄n converges to some value in Γ, denoted γ∞, the model’s sparsity misspeci-

fication implies that the ratio
∑
ij q

(0)
ij∑

ij q
(γ̄∞)
ij

must diverge or go to zero. We can then divide the

limiting behavior of β̄ into two cases:

Model is too dense. In this case,
∑
ij q

(0)
ij∑

ij q
(γ̄∞)
ij

→ 0. To obtain the limit for β̄n, we can divide

the score equation by
∑

ij q
(γ̄n)
ij . In the limit, the second term on the LHS and the term on

the RHS converge to zero, and we obtain the limiting score equation:

lim
n→∞

(∑
ij

q
(γ̄n)
ij

)−1∑
ij

λ
(β̄n)
ij q

(γ̄n)
ij

(
(1− p(β̄n)

ij )

(1− p(β̄n)
ij q

(γ̄n)
ij )

)
= 0 (56)

Normalizing by the sum of the factors that multiply λ
(β̄n)
ij , we see that limn→∞

∑
ij λ

(β̄n)
ij /

(
n
2

)
=

0, or that the average mean expected number of pairwise interactions converges to zero. This

implies by the functional form of λij and the above assumptions about the covariates that

at least one component of β must diverge.

Model is too sparse. In this case,
∑
ij q

(γ̄∞)
ij∑

ij q
(0)
ij

→ 0. We apply a similar operation, this time

dividing the score equation by
∑

ij q
(0)
ij to obtain

lim
n→∞

(∑
ij

q
(0)
ij

)−1 [∑
ij

λ
(β̄n)
ij q

(0)
ij

(
p

(0)
ij

(1− q(γ̄n)
ij )

(1− p(β̄n)
ij q

(γ̄n)
ij )

)
− λ(0)

ij q
(0)
ij

]
= 0 (57)

In this case, the factors multiplying λ
(β̄n)
ij and λ

(0)
ij cannot be reconciled. In particular, the

factor in parentheses is strictly less than one, so the limiting solution for β̄n gives a set of

expected interaction numbers λ
(β̄n)
ij that are asymptotically biased upward – thus, if the model

for the observable interactions Y | R is correctly specified, the estimator β̂n is inconsistent.

Nonetheless, it appears that β̄n has the potential to converge to a point on the interior of

the parameter space, so for large samples the moving target behavior may be negligible for

a particular application.
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7.2.2 Efficiency

We can also derive the efficiency loss of the truncated estimator with respect to the oracle

estimator in this example. The efficiency of the oracl estimator is easily obtained by replacing

each q
(0)
ij and q

(γ)
ij with the known values of Rij in Equation 52 and differentiating with respect

to β. This yields:

Ior(β) =
∑
ij∈R

λ
(β)
ij XijX

>
ij (58)

=
∑
ij∈R

(
λ

(β)
ij − p

(0)
ij

λ
(β)
ij

p
(β)
ij

(
1− (1− p(β)

ij )
λ

(β)
ij

p
(β)
ij

))
XijX

>
ij + Itr(β) (59)

Itr(β) =
∑
ij∈R

(
p

(0)
ij

λ
(β)
ij

p
(β)
ij

(
1− (1− p(β)

ij )
λ

(β)
ij

p
(β)
ij

))
XijX

>
ij (60)

Because both the oracle estimator and the truncated estimator are linearly parameterized

natural exponential families, the information matrices have the form of a weighted inner

product of the design matrix X [26]. Thus, the sum of the weights alone can be used to

quantify the amount of information accumulated by each procedure since both procedures

employ the same design matrices X.

The weighting factor in Equation 60 has three main factors that have appealing interpreta-

tions. The first factor, p
(0)
ij , represents the sample size effect on information, and accounts

for the fact that the truncated estimator only extracts information from those dyads that

are actually observed to be nonzero. This factor appears regardless of the model form. The

second factor corresponds to the “baseline” information contained in a nonzero observation.

Heuristically, because the truncated procedure is derived from a Poisson procedure, we can

specify the baseline information to be equal to its expectation, as is the case with the Poisson

family. Under the truncated observation mechanism, this expectation is
λ

(β)
ij

p
(β)
ij

. The third fac-

tor is one minus the information lost due to identification, as discussed in Section 6.3. The

fraction of lost information corresponds to the information that the procedure loses by not

being able to compare the observed outcome to the counterfactual siutation where that out-

come was zero instead. This lost information is given by the expected baseline information

gained in such a situation if there were no truncation,
λ

(β)
ij

p(β)ij
, multiplied by the probability

of such a situation, as implied by β, or 1− p(β)
ij .

We can observe how the information loss depends on the parameter β by plotting compo-

nents of the information weights as a function of λ
(β)
ij . In Figure 3, we first plot the third
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Figure 3: Left: Identification (black line) factor corresponding to how baseline information

is scaled based on identification loss. For larger values of λ
(β)
ij this factor approaches one

(red dotted line), while for smaller values, the counterfactual observation of a zero for dyad
ij carries information unavailable to the truncated procedure. Right: Asymptotic informa-
tion weight obtained by substituting p

(β)
ij for p

(0)
ij in the weight expression in Equation 60.

For large values of λ
(β)
ij , both sample size loss and identification loss become smaller, and

the information weight for the truncated estimator (black line) approaches the information
weight of the oracle estimator (red dotted line), implying that the truncated procedure is

nearly fully informative for large λ
(β)
ij .

identification factor in the truncated information weight. As expected, we see that when

λ
(β)
ij is large, this factor approaches one, indicating that there is little information lost due to

identification. This is because the counterfactual outcome where Yij = 0 is highly unlikely

for λ
(β)
ij large, and so the lost comparison to this counterfactual had little information to

contribute.

In Figure 3, we also plot the asymptotic truncated information weight, which we obtain

by substituting p
(β)
ij for p

(0)
ij in the weight expression in Equation 60. This substitution is

reasonable asymptotically when p
(β̂)
ij → p

(0)
ij , since the information will be evaluated in the

neighborhood of the MLE. Using this substitution, the truncated information weight is only

a function of λ
(β)
ij . Here we see that for λ

(β)
ij large, both sample size loss and identification

loss become small, and the information weight in the truncated procedure approaches the

information weight in the oracle procedure, given by λ
(β)
ij .
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8 Simulated Examples

8.1 Simulated counting process examples

In this section, we conduct a simulation study designed to mimic the structure of the inventor

collaboration network analysis presented in Section 1.1. We first demonstrate the moving

target phenomenon from Theorem 2 under sparsity misspecification, characterizing the in-

stability of the effective estimand, and the corresponding instability in the MLE. We then

demonstrate the robustness of the truncated estimator to sparsity misspecification. Finally,

we explore the properties of the truncated estimator more generally, using a full factorial

design to explore how the efficiency and coverage properties of the truncated estimator and

its corresponding asymptotic confidence interval depend on the underlying generative pa-

rameters. The results of the factorial experiment speak to the issues discussed in Section 6.2

and Section 6.3.

8.1.1 Model specification

For this problem, a natural choice of model is counting process regression [28]. This is a

CID model, and is thus sensitive to sparsity misspecification under regularity conditions.

According to this model, we represent the outcome Yij(·) | Rij = 1 for any pair of actors ij

as a counting process with instantaneous hazard given by a GLM specification:

log λij(t) = β′Xij(t). (61)

In this case, Xij(t) represent covariates associated with each pair which may depend on time,

and which may include aspects of the history of the counting process itself. Conditional on

the relationship graph R, this model yields the log-likelihood for β:

Ltr(β) =
∑
ij∈R

(
−
∫ T

0

λij(s | Fs)ds
)

+

Yij(T )∑
k=1

log λij

(
t
(k)
ij | Ft(k)

ij

)
, (62)
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where t
(k)
ij is the time of the kth observed interaction between actors i and j. Likewise, the

truncated log-likelihood for β has the form

Ltr(β) =
∑

ij:Aij=1

(
−
∫ T

0

λij(s | Fs)ds
)

+

Yij(T )∑
k=1

log λij

(
t
(k)
ij | Ft(k)

ij

)
− log

(
1− exp

(
−
∫ T

0

λij(s | F0
s )ds

)) , (63)

where F0
s is the history that would have been induced if no interactions had taken place

between actors i and j before time s.

To simulate from this model, we define a set of actors and assign each actor a zipcode and

assignee (firm). Using these attributes, we define binary covariate vectors for each pair of

actors that report whether the actors live in the same zipcode, or work for the same assignee.

As we allow the process to unfold, we also keep track of whether at time t the actors have

had previous collaborations. Using these covariates, we simulate from the following CIR

model:

Rij | Xij ∼ Bin(ρij) (64)

logit ρij ≡ γ0 logit(α(i)) + γ1 · Zipij + γ2 · Asgij

Yij(t) | Rij, Xij,F(t) ∼

{
CP (λij(t)) if Rij = 1

0(t) if Rij = 0

log λij(t) ≡ β0 + β1 · Zipij + β2 · Asgij + β3 · Ng0ij(t)

In the above specification, Zip and Asg are indicators for whether actors I and J live in the

same zipcode, or work for the same firm, repsectively, and Ng0 is an indicator for previous

collaboration, i.e., Yij(t) > 0. γ is a vector of relationship process coefficients, while α(i)

is a function of i that approaches 0 as i → ∞, and controls the sparsity of the generating

process.. Both γ and α(i) are considered nuisance parameters in this case. β is a vector of

conditional interaction process coefficients, which are the parameters of interest. In these

simulations, we test our ability to recover β by various estimators.

We generate a network of size n = 2000 in which we observe 2000 interactions. From this

network, we draw subsamples by sampling groups of vertices that have the same assignee

attribute – this is analogous to building a network sample drawing a firm randomly from the

set of all firms and adding all employees to the network sample. Fixing this sample sequence,

we regenerate the network 100 times to create 100 replications.
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For each of the competing models, we assume that we have correctly specified the family of

the conditional interaction process given the relationship graph. We compare the results of

the misspecified CID approach that simply assumes the counting process specification for

all dyads to the truncation approach, which makes no assumptions about the sparsity of the

network.

8.1.2 Moving target sensitivity and robustness

To demonstrate the moving target behavior derived in Theorem 2, we focus on a single set of

simulation parameters. Here, we set αi = log(i)/i, γ = (0.02, 1, 2), and β = (1e−5, 0, 0.2, 3).

Thus, the expected relationship degree for person i goes as log(i)/i, with relationships con-

centrated more heavily between individuals in the same zip code and working for the same

assignee. Conditional on these relationships, we assume zip code has no effect on the fre-

quency of interactions between individuals who have a relationship, while asignee has a small

positive effect on this frequency and having at least one previous collaboration has a large

positive effect on this frequency.

Model family is dense. In our first example, we consider a model family that assumes the

risk process R is fully connected, corresponding to the popular GLM approach of network

regression. For each subsample generated by the sequence above, we compute the effecive

estimand of the misspecified model in addition to the MLE and MPLE from the dense and

truncated models, respectively. We repeat this for each of the 100 replications. We plot

these against the true values of β in Figure 4. The simulations highlight several results from

the discussion above. The effective estimands of the misspecified models show the moving

target behavior as they vary with n, and the estimators track closely with their effective

estimands. The truncated estimator shows no sensitivity to the sparsity of the population

process.

Model family is sparse, but rate is misspecified.The above example is an extreme

case of sparsity misspecification because the proposed model family was dense. However,

we can also demonstrate that sparsity misspecification damaging in cases where the model

family is sparse, but the rate is misspecified. In the following plots, both the truth and the

model family follow a CIR model defined above, but in this case the intercept of the logistic

equation that defines P (Rij | Xij) goes as log(i)/i for the true model, but it goes as 1/i in

the inferential model. The inferential model thus assumes a risk process whose rate is too

sparse.
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Figure 4: Plots of the sampling distribution of sequences β̂n computed from the sparsity
misspecified counting process model (red), and the truncated model (green) from samples of
differing size. We also plot the effective estimand for the misspecified model (blue) and the
true values of β (black).
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Figure 5: Plots of the effective estimand when the proposed model family is too sparse.
Here the true logistic model for Rij has intercept function log(i)/i and the inferential model
assumes the intercept goes at 1/i.
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The same behavior may be seen when the inferential model is too dense. Consider switching

the intercept functions above, so that the truth model goes as 1/i but the inferential model

goes as log(i)/i. This behavior is similar to the behavior when the investigator assumed a

dense model. In large samples, these will behave qualitatively similarly.

8.1.3 Efficiency and coverage of truncated estimator

We also use this simulated example to demonstrate the efficiency and coverage properties

of the truncated estimator and its corresponding asymptotic confidence interval in both the

finite sample and large-sample limit. For this demonstration, we expand the above simulation

to a full factorial design over the interaction parameter space B and the space of network

sample sizes. Using the same simulation design as above, we fix each of the β coefficients

corresponding Zip, Asg, and Ng0 at one of four levels while keeping the intercept coefficient

fixed across all runs, yielding 64 design points. We generate 100 replicated datasets at

each design point, and within each experimental run, we obtain estimates from 8 nested

samples of increasing sample size. We assess the efficiency and coverage properties of the

truncated estimator and its corresponding asymptotic confidence interval for each of the four

components of β (Intercept, Zip, Asg, Ng0).

Efficiency. Following Section 6.3, we compute the variance inflation factor of the truncated

estimator with respect to an oracle estimator given by the MLE when the risk set is fully

known. For finite sample sizes, we compute this inflation factor from the outputs of the

factorial experiment. The simulation yields draws from the sampling distributions of the

truncated and oracle estimators for each component of β at each design point and sample

size. To compute the variance inflation factor, we take the ratio of the sampling distribution

variances of the two estimators at each design point and sample size. The full output of the

simulation at one design point, (0, 0.2, 3), is shown in Figure 7 as an example. As expected,

the sampling distributions of estimmates from the oracle estimator are more concentrated

than those of the truncated estimator at all sample sizes.

Because this example is analytically tractable, we also compute the large-sample limiting

variance inflation factor for each parameter combination by computing the limit of the inverse

Fisher information matrix. We assume that zipcode and assignee sizes remain fixed while

the number of actors in the network grows to infinity, dyads that match on neither zipcode

nor assignee (i.e. Zipij = 0 and Asgij = 0) dominate the limiting sample, yielding convenient

simplifications. Details of this calculation, as well as a table of limiting variance inflation
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Figure 6: Plots of the effective estimand when the proposed model family is too dense. Here
the true logistic model for Rij has intercept function 1/i and the inferential model assumes
the intercept goes at log(i)/i.
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Figure 7: Plots of sampling distribution of sequences β̂n computed from the truncated model
(green) and the oracle model (red). The oracle model has full knowledge of the risk set R
and is computed using the full likelihood on this subset of dyads.
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Figure 8: Variance inflation factors resulting from the comparison of the truncated estima-
tor’s sampling distribution to the oracle estimator. Lines are colored by the value of the
“previous collaboration” coefficient, which shows the most influence on the efficiency of the
non-intercept coefficients. For each value of “prev”, the largest limiting variance inflation
factor among all remaining parameter configurations is shown on the right. These are com-
puted from the limit of the inverse of the Fisher information matrix. Note that the variance
inflation of the intercept is the same for all parameter combinations.

factors at each design point are given in the appendix.

The results in Figure 8 confirm the theory in Section 6.3. First, while in many cases the

variance inflation factor is relatively large, it is finite in the large sample limit in all cases.

Secondly, the scale of the variance reduction factors confirm that information is lost through

both a loss of sample size and a loss of identification. In this particular case, the intercept,

Zip, and Asg coefficients all lose efficiency because the truncated procedure drops all at-

risk dyads with zero observed interactions. However, there is a greater loss of efficiency for

the intercept and “previous collaboration” coefficients because all of the dyads dropped by

the truncated procedure provide the oracle procedure with information about the intercept

coefficient that is unconfounded with the “previous collaboration” coefficient. With the

truncated procedure, these two coefficients are much more weakly identified by the time
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intervals before the first observed collaboration among the included dyads. This loss of

identification is by far the larger effect, resulting in large variance reduction factors for the

intercept and “previous collaboration” coefficients. Because the intercept is affected by both

forms of information loss, it has the largest variance inflation factor.

The variance inflation factors computed with respect to the oracle estimator represent an

upper bound on the variance inflation one would obtain from a realistic full likelihood estima-

tor. In a realistic case, a full likelihood estimator would require summation over the missing

relationship indicators R using a prior measure that is not sparsity misspecified. Assuming

such a prior were available, the variance inflation of the truncated estimator with respect to

the full-likelihood procedure would depend on the fraction of missing information implied

by this prior measure, with variance reduction coming at the cost of potentially influential

prior assumptions.

Coverage. Because the truncated estimator is itself the MLE of a derived sub-experiment,

it has a corresponding asymptotic confidence interval, computed from the inverse of the ob-

served Fisher information matrix Itr(β̂tr). This asymptotic interval is guaranteed to achieve

nominal coverage in the large sample limit. Here we explore the finite sample properties of

this interval using the factorial design described above. For each of the 100 replications at

each design point and sample size we check whether the asymptotic 95% intervals for each of

the four parameters cover the true value and use logistic regression to quantify the sensitivity

of the coverage rate to the true parameter values.

Table 1 shows the example output coverage table for the design point (0, 0.2, 3), which

we have used as an example throughout this section. In the replications at this design

point, the asymptotic confidence intervals show undercoverage for the baseline and “previous

collaboration” coefficients, while the intervals for the Zip and Asg coefficients remain close

to nominal coverage levels. We summarize the sensitivity of coverage rates to parameter

values in analysis of deviance tables for each parameter estimator. These tables summarize

how much of the deviance in the logistic regression fit can be explained by the levels of

the underlying parameters and their interactions. They are used informally to highlight the

relative magnitude of coverage variabilities across parameter values. The exact values in

these tables, particularly the p-values, should not be taken at face value because the logistic

regression analysis performed here did not account for the nesting of samples of different

size into increasing sequences, and because the ordering of the covariates, which influences

the deviance statistics associated with each parameter class, was chosen arbitrarily. We

present the analysis of deviance table for the intercept coefficient estimator in Table 2 and
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Table 1: Coverage rates using the 95% asymptotic confidence interval from the truncated
procedure. Note that coefficients that are partially confounded under the truncation proce-
dure show undercoverage.

600 800 1000 1200 1400 1600 1800 2000
Base 0.74 0.76 0.77 0.83 0.79 0.84 0.85 0.87

Zip 0.96 0.96 0.97 0.95 0.95 0.95 0.94 0.93
Asg 0.99 0.93 0.95 0.95 0.97 0.96 0.98 0.97

Before 0.73 0.77 0.77 0.82 0.77 0.82 0.84 0.86

reserve the remaining three tables for the appendix. In Table 2 the “previous collaboration”

coefficient explains substnatially more deviance than the other parameters or interactions.

This pattern holds for the estimators for the remaining three coefficeints.

The coverage rates associated with each value of the “previous collaboration” coefficient for

each of the four estimators is shown in Figure 9. As suggested from the analysis of deviance

table, the variability within each true “previous collaboration” value (boxplot length) is rel-

atively small compared to the variability between these values (boxplot position). While

the coefficient estimators for the Zip and Asg covariates show little sensitivity to the true

value of the previous collaboration coefficient, the estimators for the intercept and previous

collaboration coefficients show strong sensitivity, with coverage decreasing significantly when

the true previous collaboration coefficient becomes large. This phenomenon is related to the

discussion of efficiency above. Under the trunated procedure, the information about the

intercept and previous collaboration coefficients is largely confounded. The only informa-

tion that separates these coefficients comes from the time intervals before collaborations are

observed on each dyad included in the truncated estimator. For larger values of the true

previous collaboration coefficient, the confounded post-collaboration information accumu-

lates more quickly, narrowing the intervals for both estimators, while the rate of information

accumulation that separates the two coefficient accumulates at the same rate, keeping the

finite sample bias the same. See Figure 7 for an illustration of this confounding and finite

sample bias. As the number of actors in the sample grows, this finite sample bias slowly

dissipates and the asymptotic intervals approach nominal coverage in the limit. Figure 9

shows evidence of this slow dissipation as well.

55



Table 2: Analysis of deviance table for Int coefficient, summarizing deviance explained by
the levels of parameter values and interactions when asymptotic confidence interval coverage
was modeled using a logistic regression. The coverages rates show strong sensitivity to
the level of the “prev” coefficient. This table is meant for informal analysis as the logistic
regression model does not take into account the nested generation mechanism employed in
the simulations and uses an arbitrary ordering of the covariates.

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 50039 34911.1
asg 3 121.00 50036 34790.1 4.70E-26
zip 3 41.83 50033 34748.3 4.36E-09
prev 3 1740.57 50030 33007.7 0.00E+00
size 7 16.87 50023 32990.8 0.018
asg:zip 9 50.75 50014 32940.1 7.80E-08
asg:prev 9 55.12 50005 32885.0 1.15E-08
zip:prev 9 36.20 49996 32848.8 3.65E-05
asg:size 21 10.53 49975 32838.3 0.971
zip:size 21 4.36 49954 32833.9 1.000
prev:size 21 14.43 49933 32819.5 0.851
asg:zip:prev 27 77.30 49906 32742.2 9.62E-07
asg:zip:size 63 22.21 49843 32720.0 1.000
asg:prev:size 63 30.39 49780 32689.6 1.000
zip:prev:size 63 21.99 49717 32667.6 1.000
asg:zip:prev:size 189 73.31 49528 32594.3 1.000
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Figure 9: Coverage of 95% asymptotic confidence intervals computed using a full factorial
design. Coverage was mostly sensitive to the level of the “prev” coefficient, which controls
how much interaction frequency increases when a previous interaction has occurred. The
truncation mechanism drops a portion of that data that uniquely informs the intercept
coefficient without confounding this effect with the “prev” coefficient. For large values of
“prev”, confounded information for the intercept and “prev” coefficients accumulates more
quickly but the finite sample bias from the portion of the truncated estimator that separates
the coefficients descreases at the same rate, resulting in undercoverage. As sample size
increases, this undercoverage slowly dissipates as the finite sample bias decreases.
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9 Discussion

In the current era of “big data”, we are encountering more and more datasets that do not fit

neatly into the simple generative processes on which much of the classical theory of statistical

estimation was built. For this reason, we should be careful to reconstruct the full scientific

argument that we are making when we deploy a particular model in a given investigation, and

make sure that the theoretical gurantees that we demand of our estimators are still relevant.

In this paper, we considered the case of social network data, and followed one particular

type of misspecification to show how a number of the social scientific arguments that we may

wish to make with network models can fall apart when they are applied to superpopulation

questions. Our investigation highlights the subtle differences between asymptotic arguments

that can emerge when we study non-standard data – in this case, the non-equivalence of

large-sample and superpopulation asymptotics. We hope that the thought process that we

outlined here can spur on more theoretical investigations that are tailored toward the nature

of the scientific question that the methodology in question is meant to answer.

Regarding the specific points of this paper, there are several loose ends that we wish to

highlight.

• Although the theoretical results presented in this paper are specific to the MLE, they

could be easily extended to more general model- or objective-function-based estimation

procedures including GEE, M-estimation, and Bayesian approaches. In particular,

several additional concentration results also due to Spokoiny allow us to generalize

the notion of the effective estimand as defined in Section 2.2 to these other inference

approaches.

• It may be the case that we took the “coward’s way out” in pivoting out of the sparsity

misspecification problem by shifting the question to sparsity-invariant estimands rather

than tackling the problem of modeling sparsity structure head-on. We do hope that in

ongoing research such as [27], more sophisticated probability models will be discovered

that can address this nees. However, we do think that the CIR class of models can

serve as a stopgap and that their computational properties make them an attractive

option for asking social scientific questions of massive network data.

• We also hope that our ultimate solution to use a partial likelihood approach for elimi-

nating the sparsity process can serve as an example for work pertaining to estimation

in the presence of high-dimensional nuisance parameters. To our knowledge, this ap-

proach is not well-publicized in modeling circles where the invariance approach violates
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the likelihood principle. However, in our experience here, we found it to offer an at-

tractive level of robustness, and we will keep it as part of our modeling toolkit.
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A Proof of Corollary 1

First, we establish that the model is responsive to the density of the network under the true,

sparse process. We make use of the Silverman-Toeplitz theorem:

Theorem 5 (Silverman Toeplitz, 1911). An infinite matrix (aij)i,j∈N with complex-valued

entries defines a regular summability method if and only if it satisfies the following three

conditions:

1. limi→∞ ai,j = 0∀j ∈ N

2. limi→∞
∑∞

j=1 ai,j = 1

3. supi
∑∞

j=1 |aij| <∞

A regular summability method is an infinite matrix transformation of a sequence such that,

if the sequence is convergent, the limit is preserved.

Consider the sequence (p
(0)
ij q

(0)
ij )i<j<n, which are marginal probabilities that Aij = 1 for each

ij. We can rewrite the score system Equation 43 in terms of a set of regular transformations
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of this sequence. Define

$
(n)
ij =

(
∇γ q

(γ̄n)
ij

q
(γ̄n)
ij (1− p(β̄n)

ij q
(γ̄n)
ij )

)

ω
(n)
ij =

$
(n)
ij∑

ij $
(n)
ij

.

Under the boundedness and positivity conditions 3 and 4, we have that the three conditions

of the Silverman-Toeplitz theorem are met. Thus, because the theorem gives that limits are

preserved under this transformation, we have the following:

lim
n→∞

(
n

2

)−1∑
p

(0)
ij q

(0)
ij = lim

n→∞

(
n

2

)−1∑
p

(0)
ij q

(0)
ij ω

(n)
ij (65)

and similarly

lim
n→∞

(
n

2

)−1∑
p

(β̄n)
ij q

(γ̄n)
ij = lim

n→∞

(
n

2

)−1∑
p

(β̄n)
ij q

(γ̄n)
ij ω

(n)
ij (66)

Further, setting the score system for γ (Equation 43) equal to 0, we have that(
n

2

)−1∑
p

(0)
ij q

(0)
ij ω

(n)
ij =

(
n

2

)−1∑
p

(β̄n)
ij q

(γ̄n)
ij ω

(n)
ij (67)

for each n. Combined with the previous result, we have(
n

2

)−1∑
p

(0)
ij q

(0)
ij − p

(β̄n)
ij q

(γ̄n)
ij ∈ o(1), (68)

as n grows large, or that |E0(Dn)− Eβ̄n,γ̄n(Dn)| ∈ o(1), i.e. that the model is responsive to

sparsity when the weights ω
(n)
ij meet the conditions of the Silverman-Toeplitz theorem.

We now show that the asymptotic bias also has the proper rate. Define

ξ
(n)
ij =

p
(β̄n)
ij q

(γ̄n)
ij∑

ij p
(β̄n)
ij q

(γ̄n)
ij

ξ
(n)
0,ij =

p
(0)
ij q

(0)
ij∑

ij p
(0)
ij q

(0)
ij

(69)

as weights. Under regularity conditions (
∑

ij q
(γ)
ij → ∞∀γ ∈ Γ and p

(β)
ij > 0∀β ∈ B, and

similar conditions on p0, q0), these weights satisfy the Silverman-Toeplitz conditions. We
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may then check whether:

lim
n→∞

∑
ij ξ

(n)
ij ω

(n)
ij∑

ij ξ
(n)
ij

→ c lim
n→∞

∑
ij ξ

(n)
0,ijω

(n)
ij∑

ij ξ
(n)
ij

→ c0 (70)

for some finite c and c0. If so, by definition the numerators and the denominators have the

same rates. Application of the Silverman-Toeplitz Theorem gives shows that this is the case,

with c = 1. Thus, we have that:(
n

2

)−1∑
ij

p
(β̄n)
ij q

(γ̄n)
ij ∼

(
n

2

)−1∑
p

(0)
ij q

(0)
ij ∼ ε0(n). (71)

This implies that |E0(Dn)−Eβ̄n,γ̄n(Dn)| = δ(n) ∈ O(ε0(n)), so the conditions for Theorem 2

are met. Under these conditions, by Theorem 2, sparsity-misspcified CID models do not

define a coherent joint population estimand (γ̄, β̄). This may not be worrisome if the “moving

target” behavior is confined to γ̄n. The identification condition ensures that changes in γ̄n

imply changes in β̄n – otherwise, A would be S-ancillary for β, contradicting the assumption.

B Limiting variance inflation calculation from Section 8.1.3

In this example, β is four-dimensional, composed of the coefficients for the intercept, Zip, Asg,

and previous collaboration coefficients, respectively. Let Is(β) be the 4×4 Fisher information

matrix for estimator s, written β̂s. Let Vs(β) = Is(β)−1 be the asymptotic covariance matrix

of β̂s. We wish to compute the asymptotic variance ratios for each parameter estimate, given

by
V trunckk (β)

V fullkk (β)
for k = 1, · · · , 4.

The information matrix for estimator s can be represented as follows:

Isn(β) =
∑
ij∈Rn

E
[
t
(1)
ij

]
wpre,sij Xpre

ij X
pre>
ij +

(
T − E

[
t
(1)
ij

])
wpostij Xpost

ij Xpost>
ij (72)

Here, E
[
t
(1)
ij

]
is the expected time of the first interaction to be observed on dyad ij, and

can be used the divide the information matrix into expected information obtained from

dyads before their first interactions and expected information obtained afterward. This

deomposition is useful because within these time intervals the covariate vector for a dyad

remains fixed. We use the superscripts pre and post to label those quantities relevant to

the pre- and post-interaction periods, respectively. As is customary for generalized linear
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models, we represent the information matrix contribution from each dyad ij as a weight wij

and the outer product of the dyad’s covariate vector Xij with itself. Note that the oracle

and truncated procedures only differ in the definition of wpreij .

Note that because the covariates Xij are discrete, the sums in Equation 72 can be collapsed

into contributions by dyads with the same covariate values. In this case, because the intercept

and “previous collaboration” covariates are fixed within the pre- and post-collaboration time

intervals, there are only four unique covariate classes, corresponding to same/diffferent zip

code, and same/different assignee. WeLOG, we fix the definitions of the covariate classes as

follows:

Xpre
1 = (1, 0, 0, 0)> Xpost

1 = (1, 0, 0, 1)>

Xpre
2 = (1, 0, 1, 0)> Xpost

2 = (1, 0, 1, 1)>

Xpre
3 = (1, 1, 0, 0)> Xpost

3 = (1, 1, 0, 1)>

Xpre
4 = (1, 1, 1, 0)> Xpost

4 = (1, 1, 1, 1)>.

Using c to index these covariate classes, and letting Nc be the number of at-risk dyads in

class c so that
∑

cNc =
∑

ij Rij,

Isn(β) =
∑
c

Nc

(
E
[
t(1)
c

]
wpre,sc Xpre

c Xpre>
c +

(
T − E

[
t(1)
c

])
wpostc Xpost

c Xpost>
c

)
. (73)

Here E
[
t
(1)
c

]
is a slight abuse of notation, but is meant to emphasize that all dyads within

a given class share the same expected time of first observed interaction.

Using Equation 73, we take the limit of the analytical inverse of Isn(β) for the truncated

and full estimators. These limits depend on the limiting composition of Nc. For these

simulations, we assume that both zip codes and assignees have fixed size as the network size

grows to infinity. Combined with the generative assumption in Equation 64, this implies

that asymptotically class 1, corresponding pairs of inventors with different zip codes and

different assignees, grows at a faster rate than the other three covariate classes. In particular,

N1 ∈ O(N2
k ) for k = 2, 3, 4.

We compute the analytic inverses using Cramer’s rule, which gives V s
kk(β) = Csn(k,k)

det(Isn(β))
, where

Cs
n(l,m) is the cofactor of element l,m in Isn(β). Thus, the variance inflation factor can be
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written

V Ik(β) = lim
n→∞

Ctr
n (k, k)

Cfull
n (k, k)

det(Ifulln )

det(Itrn )
. (74)

Beginning with the second factor of Equation 74, we note that these full determintants can

be written as the diference of sums of four-way products of elements in Isn(β). The terms

that grow fastest in this expression grow as N2
1 , so we can rewrite the determinant

det(Isn(β)) = (isn,22i
s
n,33 − (isn,23)2)(isn,11i

s
n,44 − (isn,14)2) + o(N2

1 ). (75)

Similarly, the cofactors can be written as the difference of sums of three-way products of

elements in the corresponding information matrix. The relevant cofactors can also be written

in terms of their fastest growing terms:

Cs
n(1, 1) = (isn,22i

s
n,33 − (isn,23)2)isn,44 + o(N1) (76)

Cs
n(2, 2) = (isn,11i

s
n,44 − (isn,14)2)isn,33 + o(N2

1 ) (77)

Cs
n(3, 3) = (isn,11i

s
n,44 − (isn,14)2)isn,22 + o(N2

1 ) (78)

Cs
n(4, 4) = (isn,22i

s
n,33 − (isn,23)2)isn,11 + o(N1). (79)

To write out the explicit forms of the elements of Isn(β), we define the following shorthand:

zpre,sc = E
[
t(1)
c

]
wpre,sc zpostc =

(
T − E

[
t(1)
c

])
wpostc . (80)

Evaluating Equation 73, the relevant elements of Isn(β) have the form

isn,11 =
∑
c

Nc

(
zpre,sc + zpostc

)
(81)

isn,44 = isn,14 =
∑
c

Ncz
post
c (82)

isn,22 = N3

(
zpre,s3 + zpost3

)
+N4

(
zpre,s4 + zpost4

)
(83)

isn,33 = N2

(
zpre,s2 + zpost2

)
+N4

(
zpre,s4 + zpost4

)
(84)

isn,23 = N4

(
zpre,s4 + zpost4

)
. (85)
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We compute the variance inflation factors by substitution. After simplification, we have

V I1(β) =

∑
cNcz

pre,full
c∑

cNcz
pre,tr
c

(86)

V I2(β) =
N3

(
zpre,tr3 + zpost3

)
+N4

(
zpre,tr4 + zpost4

)
N3

(
zpre,full3 + zpost3

)
+N4

(
zpre,full4 + zpost4

)Kfull

Ktr
(87)

V I3(β) =
N2

(
zpre,tr2 + zpost2

)
+N4

(
zpre,tr4 + zpost4

)
N2

(
zpre,full2 + zpost2

)
+N4

(
zpre,full4 + zpost4

)Kfull

Ktr
(88)

V I4(β) =

∑
cNc (zpre,trc + zpostc )∑

cNc

(
zpre,fullc + zpostc

)∑cNcz
pre,full
c∑

cNcz
pre,tr
c

(89)

where

Ks = N2

(
zpre,s2 + zpost2

)
N3

(
zpre,s3 + zpost3

)
+

N2

(
zpre,s2 + zpost2

)
N4

(
zpre,s4 + zpost4

)
+

N3

(
zpre,s3 + zpost3

)
N4

(
zpre,s4 + zpost4

)
(90)

To fix constants and ensure identification in the limit for the example in Section 8.1.3, we

make additional assumptions about the sizes and ordering of the asignees and zip codes. We

assume that each assignee has 200 people while each zipcode has 250 people, and that actors

are assigned to these zipcodes and assignees sequentially. In this way, the adjacency matrix

can be partitioned into sets of 4 zipcodes or 5 assignees such that there are no zipcode or

assignee matches across these partitions. This implies that in the limit, N2 = 2N3 = 3N4.

C Analysis of deviance tables
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Table 3: Analysis of Deviance for Zip coefficient.
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 50039 19873.3
asg 3.000 42.44 50036 19830.9 3.24E-09
zip 3.000 21.82 50033 19809.0 7.12E-05
prev 3.000 20.25 50030 19788.8 1.51E-04
size 7.000 6.18 50023 19782.6 0.518
asg:zip 9.000 32.60 50014 19750.0 1.57E-04
asg:prev 9.000 73.40 50005 19676.6 3.27E-12
zip:prev 9.000 18.16 49996 19658.5 0.033
asg:size 21.000 9.78 49975 19648.7 0.982
zip:size 21.000 7.86 49954 19640.8 0.996
prev:size 21.000 10.93 49933 19629.9 0.964
asg:zip:prev 27.000 114.86 49906 19515.0 8.30E-13
asg:zip:size 63.000 32.35 49843 19482.7 1.000
asg:prev:size 63.000 39.51 49780 19443.2 0.991
zip:prev:size 63.000 24.56 49717 19418.6 1.000
asg:zip:prev:size 189.000 141.74 49528 19276.9 0.996

Table 4: Analysis of Deviance for Asg coefficient.
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 50039 18617.7
asg 3.000 3.30 50036 18614.4 0.347
zip 3.000 3.68 50033 18610.8 0.298
prev 3.000 47.54 50030 18563.2 2.67E-10
size 7.000 7.72 50023 18555.5 0.358
asg:zip 9.000 26.48 50014 18529.0 0.002
asg:prev 9.000 27.33 50005 18501.7 0.001
zip:prev 9.000 41.19 49996 18460.5 4.62E-06
asg:size 21.000 24.46 49975 18436.0 0.271
zip:size 21.000 14.08 49954 18422.0 0.866
prev:size 21.000 24.02 49933 18398.0 0.292
asg:zip:prev 27.000 135.41 49906 18262.5 2.15E-16
asg:zip:size 63.000 30.46 49843 18232.1 1.000
asg:prev:size 63.000 35.38 49780 18196.7 0.998
zip:prev:size 63.000 60.39 49717 18136.3 0.570
asg:zip:prev:size 189.000 139.69 49528 17996.6 0.997
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Table 5: Analysis of Deviance for Prev coefficient.
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 50039 36518.9
asg 3.000 67.19 50036 36451.7 1.70E-14
zip 3.000 22.12 50033 36429.6 6.16E-05
prev 3.000 1395.53 50030 35034.1 2.75E-302
size 7.000 46.68 50023 34987.4 6.44E-08
asg:zip 9.000 40.43 50014 34947.0 6.35E-06
asg:prev 9.000 26.53 50005 34920.4 0.002
zip:prev 9.000 20.05 49996 34900.4 0.018
asg:size 21.000 10.55 49975 34889.8 0.971
zip:size 21.000 6.42 49954 34883.4 0.999
prev:size 21.000 11.04 49933 34872.4 0.962
asg:zip:prev 27.000 101.10 49906 34771.3 1.70E-10
asg:zip:size 63.000 23.59 49843 34747.7 1.000
asg:prev:size 63.000 18.46 49780 34729.2 1.000
zip:prev:size 63.000 18.36 49717 34710.9 1.000
asg:zip:prev:size 189.000 71.78 49528 34639.1 1.000
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